Browsing by Author "Fan, Xiaozhou"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Canonical Decomposition of Wing Kinematics for a Straight Flying Insectivorous BatFan, Xiaozhou (Virginia Tech, 2018-01-22)Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. It is shown that Proper Orthogonal Decomposition (POD) can be used to effectively to filter the measured kinematics to eliminate outliers which usually manifest as low energy higher POD modes, but which can impact the stability of aerodynamic simulations. Through aerodynamic simulations it is established that the first two modes from the POD analysis recover 62% of the lift, and reflect a drag force instead of thrust, whereas the first three modes recover 77% of the thrust and even more lift than the native kinematics. This demonstrates that mode 2, which features a combination of spanwise twisting (pitching) and chordwise cambering, is critical for the generation of lift, and more so for thrust. Based on these inferences, it is concluded that the first 7 modes are sufficient to represent the full native kinematics. The aerodynamic simulations are conducted using the immersed boundary method on 128 processors. They utilize a grid of 31 million cells and the bat wing is represented by about 50000 surface elements. The movement of the immersed wing surface is defined by piecewise cubic splines that describe the time evolution of each control point on the wing. The major contribution of this work is the decomposition of the native kinematics into canonical flapping wing physical descriptors comprising of the flapping motion, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests a Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of outer part of the wing ( hand wing ) with respect to the inner part of the wing ( arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds.
- Canonical description of wing kinematics and dynamics for a straight flying insectivorous bat (Hipposideros pratti)Sekhar, Susheel; Windes, Peter; Fan, Xiaozhou; Tafti, Danesh K. (PLOS, 2019-06-25)Bats, with highly articulated wings, are some of the most agile flyers in nature. A novel three-dimensional geometric decomposition framework is developed to reduce the complex kinematics of a bat wing into physical movements used to describe flapping flight: namely flapping, stroke plane deviation and pitching, together with cambering and flexion. The decomposition is combined with aerodynamic simulations to investigate the cumulative effect of each motion on force production, and their primary contribution to the unsteady vortex dynamics. For the nearly straight and level flight of Hipposideros pratti, results show that the flapping motion by itself induced a moderate drag and lift. Stroke plane deviation increased lift, and nullified the drag. With the inclusion of the pitching motion into the kinematics, lift production further increased by a factor of more than 2.5, and exhibited a positive net thrust by virtue of the favorable wing orientation during the upstroke. The primary contribution of cambering, which included a maximum chord line displacement of approximate to 40% standard mean chord, was the stabilization of the leading edge vortex during the downstroke. This increased mean lift by about 35% at the expense of net thrust. Flexion was perhaps the most complex motion with maximum displacements of 75% standard mean chord. This was instrumental in reducing the negative lift during the upstroke by preventing the formation of strong leading edge vortices. The aerodynamic effective angle of attack emerged as a heuristic parameter to describe lift and net thrust production across movements.