Browsing by Author "Farrell, Kayla"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Controlling hypothalamic DNA methylation at the Pomc promoter does not regulate weight gain during the development of obesityMcFadden, Taylor; Gaito, Natasha; Carucci, Isabella; Fletchall, Everett; Farrell, Kayla; Jarome, Timothy J. (Public Library of Science, 2023-04)Obesity is a complex medical condition that is linked to various health complications such as infertility, stroke, and osteoarthritis. Understanding the neurobiology of obesity is crucial for responding to the etiology of this disease. The hypothalamus coordinates many integral activities such as hormone regulation and feed intake and numerous studies have observed altered hypothalamic gene regulation in obesity models. Previously, it was reported that the promoter region of the satiety gene, Pomc, has increased DNA methylation in the hypothalamus following short-term exposure to a high fat diet, suggesting that epigenetic-mediated repression of hypothalamic Pomc might contribute to the development of obesity. However, due to technical limitations, this has never been directly tested. Here, we used the CRISPR-dCas9-TET1 and dCas9-DNMT3a systems to test the role of Pomc DNA methylation in the hypothalamus in abnormal weight gain following acute exposure to a high fat diet in male rats. We found that exposure to a high fat diet increases Pomc DNA methylation and reduces gene expression in the hypothalamus. Despite this, we found that CRISPR-dCas9-TET1-mediated demethylation of Pomc was not sufficient to prevent abnormal weight gain following exposure to a high fat diet. Furthermore, CRISPR-dCas9-DNMT3a-mediated methylation of Pomc did not alter weight gain following exposure to standard or high fat diets. Collectively, these results suggest that high fat diet induced changes in Pomc DNA methylation are a consequence of, but do not directly contribute to, abnormal weight gain during the development of obesity.
- Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's DiseaseMaity, Sabyasachi; Farrell, Kayla; Navabpour, Shaghayegh; Narayanan, Sareesh Naduvil; Jarome, Timothy J. (MDPI, 2021-11-13)Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.
- Establishing an immunocompromised porcine model of human cancer for novel therapy development with pancreatic adenocarcinoma and irreversible electroporationHendricks-Wenger, Alissa; Aycock, Kenneth N.; Nagai-Singer, Margaret A.; Coutermarsh-Ott, Sheryl; Lorenzo, Melvin F.; Gannon, Jessica; Uh, Kyungjun; Farrell, Kayla; Beitel-White, Natalie; Brock, Rebecca M.; Simon, Alexander; Morrison, Holly A.; Tuohy, Joanne L.; Clark-Deener, Sherrie; Vlaisavljevich, Eli; Davalos, Rafael V.; Lee, Kiho; Allen, Irving C. (Nature Research, 2021-04-07)New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
- Phosphorylation of RPT6 Controls Its Ability to Bind DNA and Regulate Gene Expression in the Hippocampus of Male Rats during Memory FormationFarrell, Kayla; Auerbach, Aubrey; Musaus, Madeline; Navabpour, Shaghayegh; Liu, Catherine; Lin, Yu; Xie, Hehuang; Jarome, Timothy J. (Society for Neuroscience, 2024-01)Memory formation requires coordinated control of gene expression, protein synthesis, and ubiquitin–proteasome system (UPS)-mediated protein degradation. The catalytic component of the UPS, the 26S proteasome, contains a 20S catalytic core surrounded by two 19S regulatory caps, and phosphorylation of the 19S cap regulatory subunit RPT6 at serine 120 (pRPT6-S120) has been widely implicated in controlling activity-dependent increases in proteasome activity. Recently, RPT6 was also shown to act outside the proteasome where it has a transcription factor-like role in the hippocampus during memory formation. However, little is known about the proteasome-independent function of “free” RPT6 in the brain or during memory formation and whether phosphorylation of S120 is required for this transcriptional control function. Here, we used RNA-sequencing along with novel genetic approaches and biochemical, molecular, and behavioral assays to test the hypothesis that pRPT6-S120 functions independently of the proteasome to bind DNA and regulate gene expression during memory formation. RNA-sequencing following siRNA-mediated knockdown of free RPT6 revealed 46 gene targets in the dorsal hippocampus of male rats following fear conditioning, where RPT6 was involved in transcriptional activation and repression. Through CRISPR-dCas9-mediated artificial placement of RPT6 at a target gene, we found that RPT6 DNA binding alone may be important for altering gene expression following learning. Further, CRISPR-dCas13-mediated conversion of S120 to glycine on RPT6 revealed that phosphorylation at S120 is necessary for RPT6 to bind DNA and properly regulate transcription during memory formation. Together, we reveal a novel function for phosphorylation of RPT6 in controlling gene transcription during memory formation.
- Proteomic Analysis Reveals Sex-Specific Protein Degradation Targets in the Amygdala During Fear Memory FormationFarrell, Kayla; Musaus, Madeline; Navabpour, Shaghayegh; Martin, Kiley; Ray, W. Keith; Helm, Richard F.; Jarome, Timothy J. (Frontiers, 2021-09-29)Ubiquitin-proteasome mediated protein degradation has been widely implicated in fear memory formation in the amygdala. However, to date, the protein targets of the proteasome remain largely unknown, limiting our understanding of the functional significance for protein degradation in fear memory formation. Additionally, whether similar proteins are targeted by the proteasome between sexes has yet to be explored. Here, we combined a degradation-specific K48 Tandem Ubiquitin Binding Entity (TUBE) with liquid chromatography mass spectrometry (LC/MS) to identify the target substrates of the protein degradation process in the amygdala of male and female rats following contextual fear conditioning. We found that males (43) and females (77) differed in the total number of proteins that had significant changes in K48 polyubiquitin targeting in the amygdala following fear conditioning. Many of the identified proteins (106) had significantly reduced levels in the K48-purified samples 1 h after fear conditioning, suggesting active degradation of the substrate due to learning. Interestingly, only 3 proteins overlapped between sexes, suggesting that targets of the protein degradation process may be sex-specific. In females, many proteins with altered abundance in the K48-purified samples were involved in vesicle transport or are associated with microtubules. Conversely, in males, proteins involved in the cytoskeleton, ATP synthesis and cell signaling were found to have significantly altered abundance. Only 1 protein had an opposite directional change in abundance between sexes, LENG1, which was significantly enhanced in males while lower in females. This suggests a more rapid degradation of this protein in females during fear memory formation. Interestingly, GFAP, a critical component of astrocyte structure, was a target of K48 polyubiquitination in both males and females, indicating that protein degradation is likely occurring in astrocytes following fear conditioning. Western blot assays revealed reduced levels of these target substrates following fear conditioning in both sexes, confirming that the K48 polyubiquitin was targeting these proteins for degradation. Collectively, this study provides strong evidence that sex differences exist in the protein targets of the degradation process in the amygdala following fear conditioning and critical information regarding how ubiquitin-proteasome mediated protein degradation may contribute to fear memory formation in the brain.
- Sex-differences in proteasome-dependent K48-polyubiquitin signaling in the amygdala are developmentally regulated in ratsFarrell, Kayla; Auerbach, Aubrey; Liu, Catherine; Martin, Kiley; Pareno, Myasia; Ray, W. Keith; Helm, Richard F.; Biase, Fernando; Jarome, Timothy J. (2023-11-10)Background Sex differences have been observed in several brain regions for the molecular mechanisms involved in baseline (resting) and memory-related processes. The ubiquitin proteasome system (UPS) is a major protein degradation pathway in cells. Sex differences have been observed in lysine-48 (K48)-polyubiquitination, the canonical degradation mark of the UPS, both at baseline and during fear memory formation within the amygdala. Here, we investigated when, how, and why these baseline sex differences arise and whether both sexes require the K48-polyubiquitin mark for memory formation in the amygdala. Methods We used a combination of molecular, biochemical and proteomic approaches to examine global and protein-specific K48-polyubiquitination and DNA methylation levels at a major ubiquitin coding gene (Uba52) at baseline in the amygdala of male and female rats before and after puberty to determine if sex differences were developmentally regulated. We then used behavioral and genetic approaches to test the necessity of K48-polyubiquitination in the amygdala for fear memory formation. Results We observed developmentally regulated baseline differences in Uba52 methylation and total K48-polyubiquitination, with sexual maturity altering levels specifically in female rats. K48-polyubiquitination at specific proteins changed across development in both male and female rats, but sex differences were present regardless of age. Lastly, we found that genetic inhibition of K48-polyubiquitination in the amygdala of female, but not male, rats impaired fear memory formation. Conclusions These results suggest that K48-polyubiquitination differentially targets proteins in the amygdala in a sex-specific manner regardless of age. However, sexual maturity is important in the developmental regulation of K48-polyubiquitination levels in female rats. Consistent with these data, K48-polyubiquitin signaling in the amygdala is selectively required to form fear memories in female rats. Together, these data indicate that sex-differences in baseline K48-polyubiquitination within the amygdala are developmentally regulated, which could have important implications for better understanding sex-differences in molecular mechanisms involved in processes relevant to anxiety-related disorders such as post-traumatic stress disorder (PTSD).
- Sex-Specific Linear Polyubiquitination Is a Critical Regulator of Contextual Fear Memory FormationMusaus, Madeline; Farrell, Kayla; Navabpour, Shaghayegh; Ray, W. Keith; Helm, Richard F.; Jarome, Timothy J. (Frontiers, 2021-07-09)Strong evidence supports that protein ubiquitination is a critical regulator of fear memory formation. However, as this work has focused on protein degradation, it is currently unknown whether polyubiquitin modifications that are independent of the proteasome are involved in learning-dependent synaptic plasticity. Here, we present the first evidence that atypical linear (M1) polyubiquitination, the only ubiquitin chain that does not occur at a lysine site and is largely independent of the proteasome, is critically involved in contextual fear memory formation in the amygdala in a sex-specific manner. Using immunoblot and unbiased proteomic analyses, we found that male (49) and female (14) rats both had increased levels of linear polyubiquitinated substrates following fear conditioning, though none of these protein targets overlapped between sexes. In males, target protein functions involved cell junction and axonal guidance signaling, while in females the primary target was Adiponectin A, a critical regulator of neuroinflammation, synaptic plasticity, and memory, suggesting sex-dependent functional roles for linear polyubiquitination during fear memory formation. Consistent with these increases, in vivo siRNA-mediated knockdown of Rnf31, an essential component of the linear polyubiquitin E3 complex LUBAC, in the amygdala impaired contextual fear memory in both sexes without affecting memory retrieval. Collectively, these results provide the first evidence that proteasome-independent linear polyubiquitination is a critical regulator of fear memory formation, expanding the potential roles of ubiquitin-signaling in learning-dependent synaptic plasticity. Importantly, our data identify a novel sex difference in the functional role of, but not a requirement for, linear polyubiquitination in fear memory formation.