Browsing by Author "Fassari, S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Coupling constant thresholds of perturbed periodic HamiltoniansFassari, S.; Klaus, Martin (AIP Publishing, 1998-09)We consider Schrodinger operators of the form H-lambda= -Delta + V + lambda W on L-2(R-v) (v=1, 2, or 3) with V periodic, W short range, and lambda a real non-negative parameter. Then the continuous spectrum of H-lambda has the typical band structure consisting of intervals, separated by gaps. In the gaps there may be discrete eigenvalues of H-lambda that are functions of the parameter lambda. Let (a,b) be a gap and E(lambda)E(a,b) an eigenvalue of H-lambda. We study the asymptotic behavior of E(lambda) as lambda approaches a critical value lambda(0), called a coupling constant threshold, at which the eigenvalue either emerges from or is absorbed into the continuous spectrum. A typical question is the following: Assuming E(lambda)down arrow a as lambda down arrow lambda(0), is E(lambda)-a similar to c(lambda - lambda(0))(alpha) for some alpha>0 and c not equal 0, or is there an expansion in some other quantity? As one expects from previous work in the case V=0, the answer strongly depends on v. (C) 1998 American Institute of Physics.
- Spectral properties of the Kronig-Penney Hamiltonian with a localized impurityFassari, S. (AIP Publishing, 1989-06)It is shown that there exist bound states of the operator H ±λ=−(d 2/d x 2) +∑ m∈Z δ(⋅−(2m+1)π)±λW, W being an L 1(−∞,+∞) non‐negative function, in every sufficiently far gap of the spectrum of H 0=−d 2/d x 2 +∑ m∈Z δ(⋅−(2m+1)π). Such an operator represents the Schrödinger Hamiltonian of a Kronig–Penney‐type crystal with a localized impurity. The analyticity of the greatest (resp. lowest) eigenvalue of H λ (resp. H −λ) occurring in a spectral gap as a function of the coupling constant λ when W is assumed to have an exponential decay is also proven.