Browsing by Author "Feldman, Chris R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Parallel Evolution of Tetrodotoxin Resistance in Three Voltage-Gated Sodium Channel Genes in the Garter Snake Thamnophis sirtalisMcGlothlin, Joel W.; Chuckalovcak, John P.; Janes, Daniel E.; Edwards, Scott V.; Feldman, Chris R.; Brodie, Edmund D.; Pfrender, Michael E.; Brodie, Edmund D. (Oxford University Press, 2014-08-18)Members of a gene family expressed in a single species often experience common selection pressures. Consequently, the molecular basis of complex adaptations may be expected to involve parallel evolutionary changes in multiple paralogs. Here, we use bacterial artificial chromosome library scans to investigate the evolution of the voltage-gated sodium channel (Nav) family in the garter snake Thamnophis sirtalis, a predator of highly toxic Taricha newts. Newts possess tetrodotoxin (TTX), which blocks Nav’s, arresting action potentials in nerves and muscle. Some Thamnophis populations have evolved resistance to extremely high levels of TTX. Previous work has identified amino acid sites in the skeletal muscle sodium channel Nav1.4 that confer resistance to TTX and vary across populations. We identify parallel evolution of TTX resistance in two additional Nav paralogs, Nav1.6 and 1.7, which are known to be expressed in the peripheral nervous system and should thus be exposed to ingested TTX. Each paralog contains at least one TTX-resistant substitution identical to a substitution previously identified in Nav1.4. These sites are fixed across populations, suggesting that the resistant peripheral nerves antedate resistant muscle. In contrast, three sodium channels expressed solely in the central nervous system (Nav1.1–1.3) showed no evidence of TTX resistance, consistent with protection from toxins by the blood–brain barrier. We also report the exon–intron structure of six Nav paralogs, the first such analysis for snake genes. Our results demonstrate that the molecular basis of adaptation may be both repeatable across members of a gene family and predictable based on functional considerations.
- Sex linkage of the skeletal muscle sodium channel gene (SCN4A) explains apparent deviations from Hardy–Weinberg equilibrium of tetrodotoxin-resistance alleles in garter snakes (Thamnophis sirtalis)Gendreau, Kerry L.; Hague, Michael T. J.; Feldman, Chris R.; Brodie, Edmund D., Jr.; Brodie, Edmund D. III; McGlothlin, Joel W. (Springer Nature, 2020-02-28)The arms race between tetrodotoxin-bearing Pacific newts (Taricha) and their garter snake predators (Thamnophis) in western North America has become a classic example of coevolution, shedding light on predator-prey dynamics, the molecular basis of adaptation, and patterns of convergent evolution. Newts are defended by tetrodotoxin (TTX), a neurotoxin that binds to voltage-gated sodium channels (Nav proteins), arresting electrical activity in nerves and muscles and paralyzing would-be predators. However, populations of the common garter snake (T. sirtalis) have overcome this defense, largely through polymorphism at the locus SCN4A, which renders the encoded protein (Nav1.4) less vulnerable to TTX. Previous work suggests that SCN4A commonly shows extreme deviations from Hardy–Weinberg equilibrium (HWE) in these populations, which has been interpreted as the result of intense selection imposed by newts. Here we show that much of this apparent deviation can be attributed to sex linkage of SCN4A. Using genomic data and quantitative PCR, we show that SCN4A is on the Z chromosome in Thamnophis and other advanced snakes. Taking Z-linkage into account, we find that most apparent deviations from HWE can be explained by female hemizygosity rather than low heterozygosity. Sex linkage can affect mutation rates, selection, and drift, and our results suggest that Z-linkage of SCN4A may make significant contributions to the overall dynamics of the coevolutionary arms race between newts and snakes.