Browsing by Author "Fernandez, R. Thomas"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery PlantsPoudyal, Shital; Fernandez, R. Thomas; Owen, James; Cregg, Bert (MDPI, 2019-11-09)Managers of ornamental nurseries are increasingly reusing runoff water as an irrigation source, but residual pesticides in recycled water may result in plant phytotoxicity on crop plants. Our study focused on understanding the responses of container-grown landscape plants to residual pesticides in irrigation water. Hydrangea paniculata ‘Limelight’, Cornus obliqua ‘Powell garden’, and Hosta ‘Gold standard’ were exposed to various concentrations of isoxaben, chlorpyrifos, and oxyfluorfen (0, 0.15, 0.35, 0.7, and 1.4 mg/L of isoxaben; 0, 0.05, 0.1, 0.2, and 0.4 mg/L of chlorpyrifos; and 0, 0.005, 0.01, 0.015, and 0.02 mg/L of oxyfluorfen) applied as overhead irrigation. After three months of application, we assessed the dry weight biomass, growth, and parameters related to photosynthetic physiology (SPAD chlorophyll index, light-adapted chlorophyll fluorescence, and photosynthesis carbon dioxide response (A/Ci) curves. We also sampled plant leaf, stem, and root tissues for residual pesticides. The effects of the pesticides were pesticide-specific and taxa-specific. Exposure to oxyfluorfen resulted in visible injury in all three taxa and reduced total biomass, chlorophyll index, and photosynthesis in Hydrangea and Hosta. All three taxa absorbed and retained pesticides in leaf and stem tissues. Growers should follow best management practices to reduce exposure from irrigation with runoff, particularly for herbicides with post-emergent activity.
- Greenhouse and Nursery Water Management Characterization and Research Priorities in the USAWhite, Sarah A.; Owen, James S.; Majsztrik, John C.; Oki, Lorence R.; Fisher, Paul R.; Hall, Charles R.; Lea-Cox, John D.; Fernandez, R. Thomas (MDPI, 2019-11-08)Nursery, floriculture, and propagation production accounted for 79% ($13.3 Billion) of 2017 ornamental specialty crop production in the United States. Access to high quality water sources is increasingly limited for irrigating these economically significant crops. Given the production, environmental, and economic issues associated with the use of water—including recycled, reclaimed, surface, and ground water—it is critical to develop sustainable runoff, containment, and remediation technologies, and to identify alternative sources of water. To better understand current practices and future water-related needs as perceived by grower stakeholders, an online survey was distributed nationally and five in-depth round table discussion sessions were conducted at the Mid-Atlantic Nursery Trade Show, Gulf States Horticultural Expo, California Grown Show, AmericanHort’s Cultivate, and the Farwest Show with a total of 36 individual industry participants. A team of research and extension specialists facilitated by a Specialty Crops Research Initiative Planning Grant (NIFA Project # 2011-51181-30633) analyzed and concisely summarized the results from the survey and the round table discussions. Research priorities related to water management identified by stakeholders revolved around six themes: (1) recycled water infrastructure and management; (2) contaminants; (3) plant health and water quality; (4) water treatment technologies; (5) competing and complementary water uses; (6) societal perception of agricultural water use.
- Irrigation return flow and nutrient movement mitigation by irrigation method for container plant productionAbdi, Damon E.; Owen, James S.; Brindley, Julie C.; Birnbaum, Anna; Cregg, Bert M.; Fernandez, R. Thomas (Springer, 2021-09)The production of nursery crops demands substantial irrigation, with overhead irrigation the most common method of application; however, this method is inefficient with respect to water used and the precision with which it is applied, resulting in the generation of irrigation return flow and concomitant agrochemical export. Microirrigation systems such as individual container spray stakes provide water directly to crops thus applying water more efficiently than overhead systems but may be more costly in terms of installation (smaller pipes and components; however, a greater quantity of pipes and components) and maintenance. The study was conducted at the Michigan State University Research Nursery, where four ornamental shrub taxa were produced in #3 (11.3 L) containers using a control with 19 mm overhead irrigation per day and a conventional phosphorus fertilizer (Conv) (19-2.16-6.64), compared with four treatments: a static, daily (2 L per container) spray stake irrigation (SS2Lpd) and conventional phosphorus fertilizer; a static daily (2 L per container) spray stake irrigation and low phosphorus fertilizer (LowP) (19-1.62-6.64); spray stake irrigation based on substrate volumetric water content (theta) (up to 2.4 L per container) (SS theta) and conventional fertilizer; and spray stake irrigation based on theta (up to 2.4 L per container) and low phosphorus fertilizer. Spray stakes reduced irrigation by 76-80% compared to the overhead control, and reduced the generation of both surface and subsurface irrigation return flow (IRF), mitigating the movement of both N and P (over 98% reduction in surface IRF). Plant growth index (GI) was measured on 12 June 2017 and 6 October 2017, followed by a destructive harvest to measure shoot dry weight, and shoot nutritional content. For all four taxa, microirrigation systems were capable of producing plants of equivalent GI and shoot nutritional concentration; however, plants receiving the low phosphorus fertilizer produced less shoot biomass. Microirrigation is effective in reducing water use, water lost to IRF (particularly surface IRF), and associated fertilizer movement, while maintaining crop size.
- The Relationship between Drone Speed and the Number of Flights in RFID Tag Reading for Plant InventoryQuino, Jannette; Maja, Joe Mari; Robbins, James; Owen, James; Chappell, Matthew; Camargo, Joao Neto; Fernandez, R. Thomas (MDPI, 2021-12-22)Accurate inventory allows for more precise forecasting, including profit projections, easier monitoring, shorter outages, and fewer delivery interruptions. Moreover, the long hours of physical labor involved over such a broad area and the effect of inefficiencies could lead to less accurate inventory. Unreliable data and predictions, unannounced stoppages in operations, production delays and delivery, and a considerable loss of profit can all arise from inaccurate inventory. This paper extends our previous work with drones and RFID by evaluating: the number of flights needed to read all tags deployed in the field, the number of scans per pass, and the optimum drone speed for reading tags. The drone flight plan was divided into eight passes from southwest to northwest and back at a horizontal speed of 2.2, 1.7, and 1.1 m per second (m/s) at a vertically fixed altitude. The results showed that speed did not affect the number of new tags scanned (p-value > 0.05). Results showed that 90% of the tags were scanned in less than four trips (eight passes) at 1.7 m/s. Based on these results, the system can be used for large-scale nursery inventory and other industries that use RFID tags in outdoor environments. We presented two novel measurements on evaluating RFID reader efficiency by measuring how fast the reader can read and the shortest distance traveled by the RFID reader over tag.
- Water Use and Treatment in Container-Grown Specialty Crop Production: A ReviewMajsztrik, J. C.; Fernandez, R. Thomas; Fisher, P. R.; Hitchcock, D. R.; Lea-Cox, J.; Owen, J. S.; Oki, L. R.; White, S. A. (Springer, 2017-04-01)While governments and individuals strive to maintain the availability of high-quality water resources, many factors can “change the landscape” of water availability and quality, including drought, climate change, saltwater intrusion, aquifer depletion, population increases, and policy changes. Specialty crop producers, including nursery and greenhouse container operations, rely heavily on available high-quality water from surface and groundwater sources for crop production. Ideally, these growers should focus on increasing water application efficiency through proper construction and maintenance of irrigation systems, and timing of irrigation to minimize water and sediment runoff, which serve as the transport mechanism for agrichemical inputs and pathogens. Rainfall and irrigation runoff from specialty crop operations can contribute to impairment of groundwater and surface water resources both on-farm and into the surrounding environment. This review focuses on multiple facets of water use, reuse, and runoff in nursery and greenhouse production including current and future regulations, typical water contaminants in production runoff and available remediation technologies, and minimizing water loss and runoff (both on-site and off-site). Water filtration and treatment for the removal of sediment, pathogens, and agrichemicals are discussed, highlighting not only existing understanding but also knowledge gaps. Container-grown crop producers can either adopt research-based best management practices proactively to minimize the economic and environmental risk of limited access to high-quality water, be required to change by external factors such as regulations and fines, or adapt production practices over time as a result of changing climate conditions.