Browsing by Author "Fezzaa, Kamel"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Correlated patterns of tracheal compression and convective gas exchange in a carabid beetleSocha, John J.; Lee, Wat-Keat; Harrison, Jon F.; Waters, James S.; Fezzaa, Kamel; Westneat, Mark W. (Company of Biologists Ltd., 2008-11-01)Rhythmic tracheal compression is a prominent feature of internal dynamics in multiple orders of insects. During compression parts of the tracheal system collapse, effecting a large change in volume, but the ultimate physiological significance of this phenomenon in gas exchange has not been determined. Possible functions of this mechanism include to convectively transport air within or out of the body, to increase the local pressure within the tracheae, or some combination thereof. To determine whether tracheal compressions are associated with excurrent gas exchange in the ground beetle Pterostichus stygicus, we used flow-through respirometry and synchrotron x-ray phase-contrast imaging to simultaneously record CO(2) emission and observe morphological changes in the major tracheae. Each observed tracheal compression (which occurred at a mean frequency and duration of 15.6 +/- 4.2 min(-1) and 2.5 +/- 0.8 s, respectively) was associated with a local peak in CO(2) emission, with the start of each compression occurring simultaneously with the start of the rise in CO(2) emission. No such pulses were observed during inter-compression periods. Most pulses occurred on top of an existing level of CO(2) release, indicating that at least one spiracle was open when compression began. This evidence demonstrates that tracheal compressions convectively pushed air out of the body with each stroke. The volume of CO(2) emitted per pulse was 14 +/- 4 nl, representing approximately 20% of the average CO(2) emission volume during x-ray irradiation, and 13% prior to it. CO(2) pulses with similar volume, duration and frequency were observed both prior to and after x-ray beam exposure, indicating that rhythmic tracheal compression was not a response to x-ray irradiation per se. This study suggests that intra-tracheal and trans-spiracular convection of air driven by active tracheal compression may be a major component of ventilation for many insects.
- Flow Measurements in a Blood-Perfused Collagen Vessel Using X-Ray Micro-Particle Image VelocimetryAntoine, Elizabeth E.; Buchanan, Cara; Fezzaa, Kamel; Lee, Wah-Keat; Rylander, M. Nichole; Vlachos, Pavlos P. (2013-11-18)Blood-perfused tissue models are joining the emerging field of tumor engineering because they provide new avenues for modulation of the tumor microenvironment and preclinical evaluation of the therapeutic potential of new treatments. The characterization of fluid flow parameters in such in-vitro perfused tissue models is a critical step towards better understanding and manipulating the tumor microenvironment. However, traditional optical flow measurement methods are inapplicable because of the opacity of blood and the thickness of the tissue sample. In order to overcome the limitations of optical method we demonstrate the feasibility of using phase-contrast x-ray imaging to perform microscale particle image velocimetry (PIV) measurements of flow in blood perfused hydrated tissue-representative microvessels. However, phase contrast x-ray images significantly depart from the traditional PIV image paradigm, as they have high intensity background, very low signal-to-noise ratio, and volume integration effects. Hence, in order to achieve accurate measurements special attention must be paid to the image processing and PIV cross-correlation methodologies. Therefore we develop and demonstrate a methodology that incorporates image preprocessing as well as advanced PIV cross-correlation methods to result in measured velocities within experimental uncertainty.
- In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysisWang, Rongxuan; Garcia, David; Kamath, Rakesh R.; Dou, Chaoran; Ma, Xiaohan; Shen, Bo; Choo, Hahn; Fezzaa, Kamel; Yu, Hang Z.; Kong, Zhenyu (James) (Nature Portfolio, 2022-08-12)Laser powder bed fusion is a promising technology for local deposition and microstructure control, but it suffers from defects such as delamination and porosity due to the lack of understanding of melt pool dynamics. To study the fundamental behavior of the melt pool, both geometric and thermal sensing with high spatial and temporal resolutions are necessary. This work applies and integrates three advanced sensing technologies: synchrotron X-ray imaging, high-speed IR camera, and high-spatial-resolution IR camera to characterize the evolution of the melt pool shape, keyhole, vapor plume, and thermal evolution in Ti-6Al-4V and 410 stainless steel spot melt cases. Aside from presenting the sensing capability, this paper develops an effective algorithm for high-speed X-ray imaging data to identify melt pool geometries accurately. Preprocessing methods are also implemented for the IR data to estimate the emissivity value and extrapolate the saturated pixels. Quantifications on boundary velocities, melt pool dimensions, thermal gradients, and cooling rates are performed, enabling future comprehensive melt pool dynamics and microstructure analysis. The study discovers a strong correlation between the thermal and X-ray data, demonstrating the feasibility of using relatively cheap IR cameras to predict features that currently can only be captured using costly synchrotron X-ray imaging. Such correlation can be used for future thermal-based melt pool control and model validation.