Browsing by Author "Frere, Francesca"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Pathogenesis and shedding of Usutu virus in juvenile chickensKuchinsky, Sarah C.; Frere, Francesca; Heitzman-Breen, Nora; Golden, Jacob; Vázquez, Ana; Honaker, Christa F.; Siegel, Paul B.; Ciupe, Stanca M.; LeRoith, Tanya; Duggal, Nisha K. (Taylor & Francis, 2021-01-01)Usutu virus (USUV; family: Flaviviridae, genus: Flavivirus), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St. Louis encephalitis virus (SLEV), both neuroinvasive arboviruses endemic in wild bird populations in the United States. An avian model for USUV is essential to understanding zoonotic transmission. Here we describe the first avian models of USUV infection with the development of viremia. Juvenile commercial ISA Brown chickens were susceptible to infection by multiple USUV strains with evidence of cardiac lesions. Juvenile chickens from two chicken lines selected for high (HAS) or low (LAS) antibody production against sheep red blood cells showed markedly different responses to USUV infection. Morbidity and mortality were observed in the LAS chickens, but not HAS chickens. LAS chickens had significantly higher viral titers in blood and other tissues, as well as oral secretions, and significantly lower development of neutralizing antibody responses compared to HAS chickens. Mathematical modelling of virus-host interactions showed that the viral clearance rate is a stronger mitigating factor for USUV viremia than neutralizing antibody response in this avian model. These chicken models provide a tool for further understanding USUV pathogenesis in birds and evaluating transmission dynamics between avian hosts and mosquito vectors.
- Persistence of Zika virus RNA in the epididymis of the murine male reproductive tractVogt, Megan B.; Frere, Francesca; Hawks, Seth A.; Perez, Claudia E.; Coutermarsh-Ott, Sheryl; Duggal, Nisha K. (2021-08)Zika virus (ZIKV) can infect developing fetuses in utero and cause severe congenital defects independent of route of maternal infection. Infected men can shed ZIKV RNA in semen for over six months. Whether prolonged viral RNA shedding in semen indicates a persistent infection in the male reproductive tract is unknown. We hypothesized that if ZIKV establishes a persistent infection in the male reproductive tract (MRT), then immunosuppressant treatment should stimulate ZIKV replication and seminal shedding. Male mice were infected with ZIKV and immunosuppressed when they shed viral RNA but not infectious virus in ejaculates. Following immunosuppression, we did not detect infectious virus in ejaculates. However, we did detect ZIKV positive and negative sense RNA in the epididymal lumens of mice treated with cyclophosphamide, suggesting that ZIKV persists in the epididymis. This study provides insight into the mechanisms behind ZIKV sexual transmission, which may inform public health decisions regarding ZIKV risks.
- West Nile Virus Vaccination Protects against Usutu Virus Disease in MiceSalgado, Rebecca; Hawks, Seth A.; Frere, Francesca; Vázquez, Ana; Huang, Claire Y.-H.; Duggal, Nisha K. (MDPI, 2021-11-23)West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne flaviviruses that can cause neuroinvasive disease in humans. WNV and USUV circulate in both Africa and Europe and are closely related. Due to antigenic similarity, WNV-specific antibodies and USUV-specific antibodies have the potential to bind heterologous viruses; however, it is unclear whether this interaction may offer protection against infection. To investigate how prior WNV exposure would influence USUV infection, we used an attenuated WNV vaccine that contains the surface proteins of WNV in the backbone of a dengue virus 2 vaccine strain and protects against WNV disease. We hypothesized that vaccination with this attenuated WNV vaccine would protect against USUV infection. Neutralizing responses against WNV and USUV were measured in vitro using sera following vaccination. Sera from vaccinated CD-1 and Ifnar1−/− mice cross-neutralized with WNV and USUV. All mice were then subsequently challenged with an African or European USUV strain. In CD-1 mice, there was no difference in USUV titers between vaccinated and mock-vaccinated mice. However, in the Ifnar1−/− model, vaccinated mice had significantly higher survival rates and significantly lower USUV viremia compared to mock-vaccinated mice. Our results indicate that exposure to an attenuated form of WNV protects against severe USUV disease in mice and elicits a neutralizing response to both WNV and USUV. Future studies will investigate the immune mechanisms responsible for the protection against USUV infection induced by WNV vaccination, providing critical insight that will be essential for USUV and WNV vaccine development.