Browsing by Author "Fresneda Fernandez, Jorge"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Accuracy Improvement of Vehicle Recognition by Using Smart Device SensorsPias, Tanmoy Sarkar; Eisenberg, David; Fresneda Fernandez, Jorge (MDPI, 2022-06-10)This paper explores the utilization of smart device sensors for the purpose of vehicle recognition. Currently a ubiquitous aspect of people’s lives, smart devices can conveniently record details about walking, biking, jogging, and stepping, including physiological data, via often built-in phone activity recognition processes. This paper examines research on intelligent transportation systems to uncover how smart device sensor data may be used for vehicle recognition research, and fit within its growing body of literature. Here, we use the accelerometer and gyroscope, which can be commonly found in a smart phone, to detect the class of a vehicle. We collected data from cars, buses, trains, and bikes using a smartphone, and we designed a 1D CNN model leveraging the residual connection for vehicle recognition. The model achieved more than 98% accuracy in prediction. Moreover, we also provide future research directions based on our study.
- M1M2: Deep-Learning-Based Real-Time Emotion Recognition from Neural ActivityAkter, Sumya; Prodhan, Rumman Ahmed; Pias, Tanmoy Sarkar; Eisenberg, David; Fresneda Fernandez, Jorge (MDPI, 2022-11-03)Emotion recognition, or the ability of computers to interpret people’s emotional states, is a very active research area with vast applications to improve people’s lives. However, most image-based emotion recognition techniques are flawed, as humans can intentionally hide their emotions by changing facial expressions. Consequently, brain signals are being used to detect human emotions with improved accuracy, but most proposed systems demonstrate poor performance as EEG signals are difficult to classify using standard machine learning and deep learning techniques. This paper proposes two convolutional neural network (CNN) models (M1: heavily parameterized CNN model and M2: lightly parameterized CNN model) coupled with elegant feature extraction methods for effective recognition. In this study, the most popular EEG benchmark dataset, the DEAP, is utilized with two of its labels, valence, and arousal, for binary classification. We use Fast Fourier Transformation to extract the frequency domain features, convolutional layers for deep features, and complementary features to represent the dataset. The M1 and M2 CNN models achieve nearly perfect accuracy of 99.89% and 99.22%, respectively, which outperform every previous state-of-the-art model. We empirically demonstrate that the M2 model requires only 2 seconds of EEG signal for 99.22% accuracy, and it can achieve over 96% accuracy with only 125 milliseconds of EEG data for valence classification. Moreover, the proposed M2 model achieves 96.8% accuracy on valence using only 10% of the training dataset, demonstrating our proposed system’s effectiveness. Documented implementation codes for every experiment are published for reproducibility.