Browsing by Author "Galloway, Matthew P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Enduring deficits in memory and neuronal pathology after blast-induced traumatic brain injurySajja, Venkata Siva Sai Sujith; Hubbard, W. Brad; Hall, Christina S.; Ghoddoussi, Farhad; Galloway, Matthew P.; VandeVord, Pamela J. (Nature Publishing Group, 2015-11-05)
- Impaired Behavioral and Pathological Outcomes Following Blast NeurotraumaSajja, Venkata Siva Sai Sujith (Virginia Tech, 2013-08-30)Blast-induced neurotrauma (BINT) is a major societal concern due to the complex expression of neuropathological disorders after exposure to blast. Disruptions in neuronal function, proximal in time to the blast exposure, may eventually contribute to the late emergence of the clinical deficits. Besides complications with differential clinical diagnosis, the biomolecular mechanism underlying BINT that gives rise to cognitive deficits is poorly understood. Some pre-clinical studies have demonstrated cognitive deficits at an acute stage following blast overpressure (BOP) exposure. However, the behavioral deficit type (e.g., short term memory) and the mechanism underlying injury prognosis that onsets the cognitive deficits remains to be further investigated. An established rodent model of blast neurotrauma was used in order to study impaired behavioral and neuropathological outcomes following blast. Anesthetized rats were exposed to a calibrated BOP using a blast simulator while control animals were not exposed to BOP. Behavioral changes in short term memory and anxiety were assessed with standard behavioral techniques (novel objected recognition paradigm and light and dark box test) at acute and chronic stages (range: 3 hours -- 3 months). In addition, brains were assayed for neurochemical changes using proton magnetic resonance spectroscopy (MRS) and neuropathology with immunohistochemistry in cognitive regions of brain (hippocampus, amygdala, frontal cortex and nucleus accumbens) Early metabolic changes and oxidative stress were observed along with a compromise in energy metabolism associated with sub-acute (7 days following BOP exposure) active neurodegeneration and glial scarring. Data suggested GABA shunting pathway was activated and phospholipase A2 regulated arachadonic acid pathway may be involved in cellular death cascades. In addition, increased myo-inositol levels in medial pre-frontal cortex (PFC) further supported the glial scarring and were associated with impaired working memory at a sub-acute stage (7 days) following BOP exposure. Chronic working memory issues and anxiety associated behavior could be related to chronic activation of microglia in hippocampus and astrocytes in amygdala respectively. Furthermore, these results from MRS could be directly translated into clinical studies to provide a valuable insight into diagnosis of BINT, and it is speculated that gliosis associated markers (myo-inositol) may be a potential biomarker for blast-induced memory impairment.
- Traumatic Brain Injury Mechanisms in the Gottingen Minipig in Response to Two Unique Input ModesFievisohn, Elizabeth Mary (Virginia Tech, 2015-12-02)Traumatic brain injury (TBI) continues to be a widespread problem in the United States with approximately 1.7 million occurrences annually [1]. Current automotive crash test standards use the Head Injury Criterion (HIC) [2] to assess head injury potential, but this metric does not relate an impact to underlying damage. For an injury metric to effectively predict TBI, it is crucial to relate level of impact to resulting injury. The research presented in this dissertation explains the development and repeatability of two novel injury devices, impact response characterization over the course of 24 hours in the Gottingen minipig and the relationships between metabolite changes, underlying disruption, and impact kinematics, and the characterization of impact response over the course of 72 hours. The translation-input and combined translation and rotation-input injury devices were shown to be repeatable, minimizing the number of animals needed for testing. Impact response over the course of 24 hours showed axonal disruption through immunostaining and proton magnetic resonance spectroscopy. The translation-input injury group metabolite analyses revealed the initial stages of glutamate excitotoxicity while the combined-input injury group showed a clear pathway for glutamate excitotoxicity. Numerous correlative relationships and potential underlying disruption predictors were found between metabolites, immunostaining, and kinematics. The most promising predictor combination for the translation-input injury device was N-acetylaspartylglutamate/Scyllo at 24 hours compared to 1 hour and linear speed for predicting underlying light neurofilament disruption. For the combined-input injury device, the strongest predictor combination was Glutamine/N-acetylaspartylglutamate at 24 hours compared to baseline and angular acceleration for predicting underlying light neurofilament disruption. Statistically significant predictors were found between Glutamate+Glutamine/Total Creatine at 24 hours compared to baseline and all kinematics and injury metrics with an angular component for predicting heavy neurofilament disruption. Analyses over the course of 72 hours revealed persistent axonal disruption and metabolite perturbations. Overall, this dissertation and the complementary parts of this project have many societal implications. Due to the high incidence of traumatic brain injury, there is a need for prevention, mitigation, and treatment strategies. Developing a new injury metric will help improve prevention strategies, especially in the automotive, sporting, and military environments. 1 Faul, M., Xu, L., Wald, M. M., and Coronado, V. G. (2010). Traumatic Brain Injury in the United States. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. 2 Versace, J. (1971). A Review of the Severity Index. SAE Technical Paper. No. 710881