Browsing by Author "Gamal, Mohammed"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Decay Rates of Plasmonic Elliptical Nanostructures via Effective Medium TheoryGamal, Mohammed; Kandas, Ishac; Badran, Hussein; Hajjiah, Ali; Muhammed, Mufasila; Shehata, Nader (MDPI, 2021-07-27)This paper investigates the spontaneous decay rate of elliptical plasmonic nanostructures. The refractive index was analyzed using the effective medium theory (EMT). Then, the polarizability, spontaneous radiative, non-radiative decay rate, and electric field enhancement factor were characterized for the targeted elliptical nanostructures at different aspect ratios. All of the optical analyses were analyzed at different distances between the excited fluorescent coupled atom and the plasmonic nanostructure (down to 100 nm). This work is promising in selecting the optimum elliptical nanostructure according to the required decay rates for optical conversion efficiency control in energy harvesting for solar cells and optical sensing applications.
- Nano-Enriched Self-Powered Wireless Body Area Network for Sustainable Health Monitoring ServicesMokhtar, Bassem; Kandas, Ishac; Gamal, Mohammed; Omran, Nada; Hassanin, Ahmed H.; Shehata, Nader (MDPI, 2023-02-27)Advances in nanotechnology have enabled the creation of novel materials with specific electrical and physical characteristics. This leads to a significant development in the industry of electronics that can be applied in various fields. In this paper, we propose a fabrication of nanotechnology-based materials that can be used to design stretchy piezoelectric nanofibers for energy harvesting to power connected bio-nanosensors in a Wireless Body Area Network (WBAN). The bio-nanosensors are powered based on harvested energy from mechanical movements of the body, specifically the arms, joints, and heartbeats. A suite of these nano-enriched bio-nanosensors can be used to form microgrids for a self-powered wireless body area network (SpWBAN), which can be used in various sustainable health monitoring services. A system model for an SpWBAN with an energy harvesting-based medium access control protocol is presented and analyzed based on fabricated nanofibers with specific characteristics. The simulation results show that the SpWBAN outperforms and has a longer lifetime than contemporary WBAN system designs without self-powering capability.