Browsing by Author "Garcia, Paulo A."
Now showing 1 - 20 of 23
Results Per Page
Sort Options
- 7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible ElectroporationGarcia, Paulo A.; Rossmeisl, John H. Jr.; Robertson, John L.; Olson, JohnD.; Johnson, Annette J.; Ellis, Thomas L.; Davalos, Rafael V. (PLOS, 2012-11-30)The blood-brain-barrier (BBB) presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE) is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IRE-induced zone of ablation and that this transient response can be measured using gadolinium (Gd) uptake as a surrogate marker for BBB disruption. The study was performed in a Good Laboratory Practices (GLP) compliant facility and had Institutional Animal Care and Use Committee (IACUC) approval. IRE ablations were performed in vivo in normal rat brain (n = 21) with 1-mm electrodes (0.45 mm diameter) separated by an edge-to-edge distance of 4 mm. We used an ECM830 pulse generator to deliver ninety 50-ms pulse treatments (0, 200, 400, 600, 800, and 1000 V/cm) at 1 Hz. The effects of applied electric fields and timing of Gd administration (25, +5, +15, and +30 min) was assessed by systematically characterizing IRE-induced regions of cell death and BBB disruption with 7.0-T magnetic resonance imaging (MRI) and histopathologic evaluations. Statistical analysis on the effect of applied electric field and Gd timing was conducted via Fit of Least Squares with a = 0.05 and linear regression analysis. The focal nature of IRE treatment was confirmed with 3D MRI reconstructions with linear correlations between volume of ablation and electric field. Our results also demonstrated that IRE is an ablation technique that kills brain tissue in a focal manner depicted by MRI (n = 16) and transiently disrupts the BBB adjacent to the ablated area in a voltage-dependent manner as seen with Evan’s Blue (n = 5) and Gd administration.
- Device and method for electroporation based treatment of stenosis of a tubular body part(United States Patent and Trademark Office, 2020-07-07)The present invention relates to medical devices and methods for treating a lesion such as a vascular stenosis using non-thermal irreversible electroporation (NTIRE). Embodiments of the present invention provide a balloon catheter type NTIRE device for treating a target lesion comprising a plurality of electrodes positioned along the balloon that are electrically independent from each other so as to be individually selectable in order to more precisely treat an asymmetrical lesion in which the lesion extends only partially around the vessel.
- Electroporation with cooling to treat tissue(United States Patent and Trademark Office, 2019-04-02)The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. Included is a method of treating tissue with electrical energy, the method comprising: delivering electrical energy to tissue using one or more electroporation devices comprising one or more electrodes; and cooling the tissue, surrounding tissue, one or more of the electrodes, or one or more of the electroporation devices to minimize heating. In embodiments, the invention can be used to treat solid tumors, such as brain tumors, and in some embodiments, exemplary methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
- Heat transfer model to characterize the focal cooling necessary to suppress spontaneous epileptiform activityGuerra, Reynaldo G.; Davalos, Rafael V.; Garcia, Paulo A.; Rubinsky, Boris; Berger, Mitchel (SPIE, 2005-04-14)Epilepsy is characterized by paroxysmal transient disturbances of the electrical activity of the brain. Symptoms are manifested as impairment of motor, sensory, or psychic function with or without loss of consciousness or convulsive seizures. This paper presents an initial post-operative heat transfer analysis of surgery performed on a 41 year-old man with medically intractable Epilepsy. The surgery involved tumor removal and the resection of adjacent epileptogenic tissue. Electrocorticography was performed before resection. Cold saline was applied to the resulting interictal spike foci resulting in transient, complete cessation of spiking. A transient one dimensional semi-infinite finite element model of the surface of the brain was developed to simulate the surgery. An approximate temperature distribution of the perfused brain was developed by applying the bioheat equation. The model quantifies the surface heat flux reached in achieving seizure cessation to within an order of magnitude. Rat models have previously shown that the brain surface temperature range to rapidly terminate epileptogenic activity is 20-24°C. The developed model predicts that a constant heat flux of approximately -13,000W/m², applied at the surface of the human brain, would achieve a surface temperature in this range in approximately 3 seconds. A parametric study was subsequently performed to characterize the effects of brain metabolism and brain blood perfusion as a function of the determined heat flux. The results of these findings can be used as a first approximation in defining the specifications of a cooling device to suppress seizures in human models.
- High-frequency irreversible electroporation (H-FIRE) for non-thermal ablation without muscle contractionArena, Christopher B.; Sano, Michael B.; Rossmeisl, John H. Jr.; Caldwell, John L.; Garcia, Paulo A.; Rylander, M. Nichole; Davalos, Rafael V. (2011-11-21)Background Therapeutic irreversible electroporation (IRE) is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE). A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for non-thermal tissue ablation that eliminates muscle contractions seen in IRE treatments performed with unipolar electric pulses. Therefore, it has the potential to be performed clinically without the administration of paralytic agents.
- High-Frequency Irreversible Electroporation for Intracranial Meningioma: A Feasibility Study in a Spontaneous Canine Tumor ModelLatouche, Eduardo L.; Arena, Christopher B.; Ivey, Jill W.; Garcia, Paulo A.; Pancotto, Theresa E.; Pavlisko, Noah; Verbridge, Scott S.; Davalos, Rafael V.; Rossmeisl, John H. Jr. (Sage, 2018)High-frequency irreversible electroporation is a nonthermal method of tissue ablation that uses bursts of 0.5- to 2.0-microsecond bipolar electric pulses to permeabilize cell membranes and induce cell death. High-frequency irreversible electroporation has potential advantages for use in neurosurgery, including the ability to deliver pulses without inducing muscle contraction, inherent selectivity against malignant cells, and the capability of simultaneously opening the blood–brain barrier surrounding regions of ablation. Our objective was to determine whether high-frequency irreversible electroporation pulses capable of tumor ablation could be delivered to dogs with intracranial meningiomas. Three dogs with intracranial meningiomas were treated. Patient-specific treatment plans were generated using magnetic resonance imaging-based tissue segmentation, volumetric meshing, and finite element modeling. Following tumor biopsy, high-frequency irreversible electroporation pulses were stereotactically delivered in situ followed by tumor resection and morphologic and volumetric assessments of ablations. Clinical evaluations of treatment included pre- and posttreatment clinical, laboratory, and magnetic resonance imaging examinations and adverse event monitoring for 2 weeks posttreatment. High-frequency irreversible electroporation pulses were administered successfully in all patients. No adverse events directly attributable to high-frequency irreversible electroporation were observed. Individual ablations resulted in volumes of tumor necrosis ranging from 0.25 to 1.29 cm3. In one dog, nonuniform ablations were observed, with viable tumor cells remaining around foci of intratumoral mineralization. In conclusion, high-frequency irreversible electroporation pulses can be delivered to brain tumors, including areas adjacent to critical vasculature, and are capable of producing clinically relevant volumes of tumor ablation. Mineralization may complicate achievement of complete tumor ablation.
- Invited Review-Neuroimaging Response Assessment Criteria for Brain Tumors in Veterinary PatientsRossmeisl, John H. Jr.; Garcia, Paulo A.; Daniel, Gregory B.; Bourland, John Daniel; Debinski, Waldemar; Dervisis, Nikolaos G.; Klahn, Shawna L. (Wiley-Blackwell, 2014-03-01)
- Irreversible Electroporation for the Treatment of Aggressive High-Grade GliomaGarcia, Paulo A. (Virginia Tech, 2010-11-05)Malignant gliomas (MG), most notably glioblastoma multiforme (GBM), are among the most aggressive of all malignancies. High-grade variants of this type of brain cancer are generally considered incurable with singular or multimodal therapies. Many patients with GBM die within one year of diagnosis, and the 5-year survival rate in people is approximately 10%. Despite extensive research in diagnostic and therapeutic technologies, very few developments have emerged that significantly improve survival over the last seven decades. Irreversible electroporation (IRE) is a new non-thermal focal tissue ablation technique that uses low-energy electric pulses to destabilize cell membranes, thus achieving tissue death. The procedure is minimally invasive and is performed through small electrodes inserted into the tissue with treatment duration of about one minute. The pulses create an electric field that induces an increase in the resting transmembrane potential (TMP) of the cells in the tissue. The induced increase in the TMP is dependent on the electric pulse parameters. Depending on the magnitude of the induced TMP the electric pulses can have no effect, transiently increase membrane permeability or cause spontaneous death. In this dissertation we hypothesize that irreversible electroporation is capable of ablating normal (gray and white matter) and pathological (MG and/or GBM) brain tissue in a highly focused non-thermal manner that is modulated through pulse parameters and electrode configuration. Through a comprehensive experimental and numerical investigation, we tested and attained results strongly supporting our hypothesis. Specifically, we developed numerical models that were capable of simulating an entire IRE treatment protocol and would take into account pulse parameters (e.g. duration, frequency, repetition rate and strength) in addition to the dynamic changes in tissue electrical conductivity due to electroporation and joule heating, as well as biologically relevant processes such as blood perfusion and metabolic heat. We also provided a method to isolate the IRE effects from undesired thermal damage in models that were validated with real-time temperature measurements during the delivery of the pulses. Finally we outlined a procedure to use 3D volumetric reconstructions of IRE lesions using patient specific MRI scans in conjunction with the models described for establishing field thresholds or performing treatment planning prior to the surgical procedure; thus supplying the readers with the tools and understanding necessary to design appropriate treatment protocols for their specific application. Experimentally we presented the first systematic in vivo study of IRE in normal canine brain and the multimodal treatment of a canine MG patient. We confirmed that the procedure can be applied safely in the brain and was well tolerated clinically. The lesions created with IRE were sub-millimeter in resolution and we achieved 75% tumor volume reduction within 3 days post-IRE in the patient. In addition to the sharp delineation between necrotic and normal brain, the treatments spared the major blood vessels, making it appropriate for treatment of tumors adjacent to, or enveloping critical vascular structures. We believe that irreversible electroporation will play a key role in the treatment of intracranial disorders including malignant brain cancer in which the intent is to focally kill undesired tissue while minimizing damage to surrounding healthy tissue.
- Irreversible electroporation to treat aberrant cell masses(United States Patent and Trademark Office, 2015-03-31)The present invention provides methods, devices, and systems for in vivo treatment of cell proliferative disorders. The invention can be used to treat solid tumors, such as brain tumors. The methods rely on non-thermal irreversible electroporation (IRE) to cause cell death in treated tumors.
- Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds(United States Patent and Trademark Office, 2018-01-16)The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
- Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds(United States Patent and Trademark Office, 2020-01-21)The present invention relates to the field of medical treatment of diseases and disorders, as well as the field of biomedical engineering. Embodiments of the invention relate to the delivery of Irreversible Electroporation (IRE) through the vasculature of organs to treat tumors embedded deep within the tissue or organ, or to decellularize organs to produce a scaffold from existing animal tissue with the existing vasculature intact. In particular, methods of administering non-thermal irreversible electroporation (IRE) in vivo are provided for the treatment of tumors located in vascularized tissues and organs. Embodiments of the invention further provide scaffolds and tissues from natural sources created using IRE ex vivo to remove cellular debris, maximize recellularization potential, and minimize foreign body immune response. The engineered tissues can be used in methods of treating subjects, such as those in need of tissue replacement or augmentation.
- Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine PatientGarcia, Paulo A.; Pancotto, Theresa E.; Rossmeisl, John H. Jr.; Henao-Guerrero, Natalia; Gustafson, N. R.; Daniel, Gregory B.; Robertson, John L.; Ellis, Thomas L.; Davalos, Rafael V. (Adenine Press, 2011-02-01)Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain.
- A Numerical Investigation of the Electric and Thermal Cell Kill Distributions in Electroporation-Based Therapies in TissueGarcia, Paulo A.; Davalos, Rafael V.; Miklavčič, Damijan (PLOS, 2014-08-12)Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-ms PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
- A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial ProcedureGarcia, Paulo A.; Rossmeisl, John H. Jr.; Neal, Robert E. II; Ellis, Thomas L.; Davalos, Rafael V. (2011-04-30)Background Irreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating. Methods We developed numerical simulations of typical protocols based on a previously published computed tomographic (CT) guided in vivo procedure. These models were adapted to assess the effects of temperature, electroporation, pulse duration, and repetition rate on the volumes of tissue undergoing IRE alone or in superposition with thermal damage. Results Nine different combinations of voltage and pulse frequency were investigated, five of which resulted in IRE alone while four produced IRE in superposition with thermal damage. Conclusions The parametric study evaluated the influence of pulse frequency and applied voltage on treatment volumes, and refined a proposed method to delineate IRE from thermal damage. We confirm that determining an IRE treatment protocol requires incorporating all the physical effects of electroporation, and that these effects may have significant implications in treatment planning and outcome assessment. The goal of the manuscript is to provide the reader with the numerical methods to assess multiple-pulse electroporation treatment protocols in order to isolate IRE from thermal damage and capitalize on the benefits of a non-thermal mode of tissue ablation.
- Pathology of non-thermal irreversible electroporation (N-TIRE)-induced ablation of the canine brainRossmeisl, John H. Jr.; Garcia, Paulo A.; Robertson, John L.; Ellis, Thomas L.; Davalos, Rafael V. (Korean Society of Veterinary Science, 2013-12-01)This study describes the neuropathologic features of normal canine brain ablated with non-thermal irreversible electroporation (N-TIRE). The parietal cerebral cortices of four dogs were treated with N-TIRE using a dose-escalation protocol with an additional dog receiving sham treatment. Animals were allowed to recover following N-TIRE ablation and the effects of treatment were monitored with clinical and magnetic resonance imaging examinations. Brains were subjected to histopathologic and ultrastructural assessment along with Bcl-2, caspase-3, and caspase-9 immunohistochemical staining following sacrifice 72 h post-treatment. Adverse clinical effects of N-TIRE were only observed in the dog treated at the upper energy tier. MRI and neuropathologic examinations indicated that N-TIRE ablation resulted in focal regions of severe cytoarchitectural and blood-brain-barrier disruption. Lesion size correlated to the intensity of the applied electrical field. N-TIRE-induced lesions were characterized by parenchymal necrosis and hemorrhage; however, large blood vessels were preserved. A transition zone containing parenchymal edema, perivascular inflammatory cuffs, and reactive gliosis was interspersed between the necrotic focus and normal neuropil. Apoptotic labeling indices were not different between the N-TIRE-treated and control brains. This study identified N-TIRE pulse parameters that can be used to safely create circumscribed foci of brain necrosis while selectively preserving major vascular structures.
- Predictive therapeutic planning for irreversible electroporation treatment of spontaneous malignant gliomaGarcia, Paulo A.; Kos, Bor; Rossmeisl, John H. Jr.; Pavliha, Denis; Miklavčič, Damijan; Davalos, Rafael V. (Wiley, 2017-07-25)Purpose: Irreversible electroporation (IRE) has been developed as a promising minimally invasive treatment to ablate spontaneous brain tumors with pulsed electric fields in canine patients. The purpose of the study is to determine the Peleg-Fermi parameters needed to incorporate pulse number and pulse duration into the therapeutic planning of IRE. Methods: Seven canine patients were treated with IRE for spontaneous malignant glioma with MRIbased treatment planning. The treatment planning method consists of building patient-specific finite element models and using them to compute electric fields used in the IRE treatment. We evaluate the predictive power of tumor coverage with electric field alone vs. cell kill probability using radiographically confirmed clinical outcomes. Results: Results of post-treatment diagnostic imaging, tumor biopsies, and neurological examinations indicated successful tumor ablation without significant direct neurotoxicity in six of the seven dogs. Objective tumor responses were seen in four (80%) of five dogs with quantifiable target lesions according to RANO criteria. Two dogs experienced survivals in excess of 1 yr, including one dog that resulted in complete response to IRE treatment for 5+ years to date. Tumor fraction exposed to electric field over 600 V/cm was between 0.08 and 0.73, while tumor fraction exposed to electric field over 300 V/cm was between 0.17 and 0.95. Probability of cell kill of ≥ 90% was found in tumor volume fractions between 0.21 and 0.99. Conclusions: We conclude that IRE is a safe and effective minimally invasive treatment for malignant glioma and can be predicted with the Peleg-Fermi cell kill probability function. A tumor coverage of ≥ 0.9 at a cell kill probability ≥ 90% can be used to guide IRE treatments of spontaneous malignant glioma based on the radiographically confirmed clinical outcomes achieved.
- Successful Treatment of a Large Soft Tissue Sarcoma With Irreversible ElectroporationNeal, Robert E. III; Rossmeisl, John H. Jr.; Garcia, Paulo A.; Lanz, Otto I.; Henao-Guerrero, Natalia; Davalos, Rafael V. (American Society of Clinical Oncology, 2011-05-01)Irreversible electroporation (IRE) is a promising technique for the focal treatment of pathologic tissues that involves placing minimally invasive electrodes within the targeted region. A series of short, intense electric pulses are then applied to destabilize the cell membrane, presumably by creating nanopores,¹ inducing cell death in a nonthermal manner.² The unique therapeutic mechanism of IRE does not rely on tissue temperature changes, as with hyperthermic or cryoablative procedures.³,⁴ Therefore, IRE preserves the extracellular matrix, major tissue vasculature, and other sensitive structures.⁵⁻⁷ Treated regions resolve rapidly,⁵ with submillimeter resolution between treated and unaffected cells,⁸ and are predictable with numerical modeling.⁹ Treatments promote an immune response,⁵,¹⁰,¹¹ are unaltered by blood flow, can be administered quickly (approximately 5 minutes), and can be visualized in real time.¹⁰,¹²
- System and method for estimating a treatment volume for administering electrical-energy based therapies(United States Patent and Trademark Office, 2016-03-15)The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
- System and method for estimating a treatment volume for administering electrical-energy based therapies(United States Patent and Trademark Office, 2019-11-12)The invention provides for a system for estimating a 3-dimensional treatment volume for a device that applies treatment energy through a plurality of electrodes defining a treatment area, the system comprising a memory, a display device, a processor coupled to the memory and the display device, and a treatment planning module stored in the memory and executable by the processor. In one embodiment, the treatment planning module is adapted to generate an estimated first 3-dimensional treatment volume for display in the display device based on the ratio of a maximum conductivity of the treatment area to a baseline conductivity of the treatment area. The invention also provides for a method for estimating 3-dimensional treatment volume, the steps of which are executable through the processor. In embodiments, the system and method are based on a numerical model which may be implemented in computer readable code which is executable through a processor.
- System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies(United States Patent and Trademark Office, 2018-11-06)Systems and methods are provided for modeling and for providing a graphical representation of tissue heating and electric field distributions for medical treatment devices that apply electrical treatment energy through one or a plurality of electrodes. In embodiments, methods comprise: providing one or more parameters of a treatment protocol for delivering one or more electrical pulses to tissue through a plurality of electrodes; modeling electric and heat distribution in the tissue based on the parameters; and displaying a graphical representation of the modeled electric and heat distribution. In another embodiment, a treatment planning module is adapted to generate an estimated target ablation zone based on a combination of one or more parameters for an irreversible electroporation protocol and one or more tissue-specific conductivity parameters.