Browsing by Author "Garg, Mohit"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- CS5604 Information Storage and Retrieval Fall 2017 Solr ReportKumar, Abhinav; Bangad, Anand; Robertson, Jeff; Garg, Mohit; Ramesh, Shreyas; Mi, Siyu; Wang, Xinyue; Wang, Yu (Virginia Tech, 2018-01-15)The Digital Library Research Laboratory (DLRL) has collected over 1.5 billion tweets and millions of webpages for the Integrated Digital Event Archiving and Library (IDEAL) and Global Event Trend Archive Research (GETAR) projects. We are using a 21 node Cloudera Hadoop cluster to store and retrieve this information. One goal of this project is to expand the data collection to include more web archives and geospatial data beyond what previously had been collected. Another important part in this project is optimizing the current system to analyze and allow access to the new data. To accomplish these goals, this project is separated into 6 parts with corresponding teams: Classification (CLA), Collection Management Tweets (CMT), Collection Management Webpages (CMW), Clustering and Topic Analysis (CTA), Front-end (FE), and SOLR. The report describes the work completed by the SOLR team which improves the current searching and storage system. We include the general architecture and an overview of the current system. We present the part that Solr plays within the whole system with more detail. We talk about our goals, procedures, and conclusions on the improvements we made to the current Solr system. This report also describes how we coordinate with other teams to accomplish the project at a higher level. Additionally, we provide manuals for future readers who might need to replicate our experiments. The main components within the Cloudera Hadoop cluster that the SOLR team interacts with include: Solr searching engine, HBase database, Lily indexer, Hive database, HDFS file system, Solr recommendation plugin, and Mahout. Our work focuses on HBase design, data quality control, search recommendations, and result ranking. Overall, throughout the semester, we have processed 12,564 web pages and 5.9 million tweets. In order to cooperate with Geo Blacklight, we make major changes on the Solr schema. We also function as a data quality control gateway for the Front End team and deliver the finalized data for them. As to search recommendation, we provide search recommendation such as the MoreLikeThis plugin within Solr for recommending related records from search results, and a custom recommendation system based on user behavior to provide user based search recommendations. After the fine tuning over the final weeks of semester, we successfully allowed effective connection of results from data provided by other teams, and delivered them to the front end through a Solr core.
- Generalized Consensus for Practical Fault-ToleranceGarg, Mohit (Virginia Tech, 2018-09-07)Despite extensive research on Byzantine Fault Tolerant (BFT) systems, overheads associated with such solutions preclude widespread adoption. Past efforts such as the Cross Fault Tolerance (XFT) model address this problem by making a weaker assumption that a majority of processes are correct and communicate synchronously. Although XPaxos of Liu et al. (using the XFT model) achieves similar performance as Paxos, it does not scale with the number of faults. Also, its reliance on a single leader introduces considerable downtime in case of failures. This thesis presents Elpis, the first multi-leader XFT consensus protocol. By adopting the Generalized Consensus specification from the Crash Fault Tolerance model, we were able to devise a multi-leader protocol that exploits the commutativity property inherent in the commands ordered by the system. Elpis maps accessed objects to non-faulty processes during periods of synchrony. Subsequently, these processes order all commands which access these objects. Experimental evaluation confirms the effectiveness of this approach: Elpis achieves up to 2x speedup over XPaxos and up to 3.5x speedup over state-of-the-art Byzantine Fault-Tolerant Consensus Protocols.