Browsing by Author "Ghisalberti, Marco"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Modeling the Effects of Turbulence on Hyporheic Exchange and Local-to-Global Nutrient Processing in StreamsGrant, Stanley B.; Gomez-Velez, Jesus D.; Ghisalberti, Marco (2018-09)New experimental techniques are allowing, for the first time, direct visualization of mass and momentum transport across the sediment-water interface in streams. These experimental insights are catalyzing a renaissance in our understanding of the role stream turbulence plays in a host of critical ecosystem services, including nutrient cycling. In this commentary, we briefly review the nature of stream turbulence and its role in hyporheic exchange and nutrient cycling in streams. A simple process-based model, borrowed from biochemical engineering, provides the link between empirical relationships for grain-scale turbulent mixing and nutrient processing at reach, catchment, continental, and global scales.
- A One-Dimensional Model for Turbulent Mixing in the Benthic Biolayer of Stream and Coastal SedimentsGrant, Stanley B.; Gomez-Velez, Jesus D.; Ghisalberti, Marco; Guymer, Ian; Boano, Fulvio; Roche, Kevin; Harvey, Judson (2020-12)In this paper, we develop and validate a rigorous modeling framework, based on Duhamel's Theorem, for the unsteady one-dimensional vertical transport of a solute across a flat sediment-water interface (SWI) and through the benthic biolayer of a turbulent stream. The modeling framework is novel in capturing the two-way coupling between evolving solute concentrations above and below the SWI and in allowing for a depth-varying diffusivity. Three diffusivity profiles within the sediment (constant, exponentially decaying, and a hybrid model) are evaluated against an extensive set of previously published laboratory measurements of turbulent mass transfer across the SWI. The exponential diffusivity profile best represents experimental observations and its reference diffusivity scales with the permeability Reynolds number, a dimensionless measure of turbulence at the SWI. The depth over which turbulence-enhanced diffusivity decays is of the order of centimeters and comparable to the thickness of the benthic biolayer. Thus, turbulent mixing across the SWI may serve as a universal transport mechanism, supplying the nutrient and energy fluxes needed to sustain microbial growth, and nutrient processing, in the benthic biolayer of stream and coastal sediments.
- Unifying Advective and Diffusive Descriptions of Bedform Pumping in the Benthic Biolayer of StreamsGrant, Stanley B.; Monofy, Ahmed; Boano, Fulvio; Gomez-Velez, Jesus D.; Guymer, Ian; Harvey, Judson; Ghisalberti, Marco (2020-09-01)Many water quality and ecosystem functions performed by streams occur in the benthic biolayer, the biologically active upper (similar to 5 cm) layer of the streambed. Solute transport through the benthic biolayer is facilitated by bedform pumping, a physical process in which dynamic and static pressure variations over the surface of stationary bedforms (e.g., ripples and dunes) drive flow across the sediment-water interface. In this paper we derive two predictive modeling frameworks, one advective and the other diffusive, for solute transport through the benthic biolayer by bedform pumping. Both frameworks closely reproduce patterns and rates of bedform pumping previously measured in the laboratory, provided that the diffusion model's dispersion coefficient declines exponentially with depth. They are also functionally equivalent, such that parameter sets inferred from the 2D advective model can be applied to the 1D diffusive model, and vice versa. The functional equivalence and complementary strengths of these two models expand the range of questions that can be answered, for example, by adopting the 2D advective model to study the effects of geomorphic processes (such as bedform adjustments to land use change) on flow-dependent processes and the 1D diffusive model to study problems where multiple transport mechanisms combine (such as bedform pumping and turbulent diffusion). By unifying 2D advective and 1D diffusive descriptions of bedform pumping, our analytical results provide a straightforward and computationally efficient approach for predicting, and better understanding, solute transport in the benthic biolayer of streams and coastal sediments.