Browsing by Author "Gibas, Cynthia J."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Comparative Genome Analysis of Three Brucella spp. and a Data Model for Automated Multiple Genome ComparisonSturgill, David Matthew (Virginia Tech, 2003-07-30)Comparative analysis of multiple genomes presents many challenges ranging from management of information about thousands of local similarities to definition of features by combination of evidence from multiple analyses and experiments. This research represents the development stage of a database-backed pipeline for comparative analysis of multiple genomes. The genomes of three recently sequenced species of Brucella were compared and a superset of known and hypothetical coding sequences was identified to be used in design of a discriminatory genomic cDNA array for comparative functional genomics experiments. Comparisons were made of coding regions from the public, annotated sequence of B. melitensis (GenBank) to the annotated sequence of B. suis (TIGR) and to the newly-sequenced B. abortus (personal communication, S. Halling, National Animal Disease Center, USDA). A systematic approach to analysis of multiple genome sequences is described including a data model for storage of defined features is presented along with necessary descriptive information such as input parameters and scores from the methods used to define features. A collection of adjacency relationships between features is also stored, creating a unified database that can be mined for patterns of features which repeat among or within genomes. The biological utility of the data model was demonstrated by a detailed analysis of the multiple genome comparison used to create the sample data set. This examination of genetic differences between three Brucella species with different virulence patterns and host preferences enabled investigation of the genomic basis of virulence. In the B. suis genome, seventy-one differentiating genes were found, including a contiguous 17.6 kb region unique to the species. Although only one unique species-specific gene was identified in the B. melitensis genome and none in the B. abortus genome, seventy-nine differentiating genes were found to be present in only two of the three Brucella species. These differentiating features may be significant in explaining differences in virulence or host specificity. RT-PCR analysis was performed to determine whether these genes are transcribed in vitro. Detailed comparisons were performed on a putative B. suis pathogenicity island (PAI). An overview of these genomic differences and discussion of their significance in the context of host preference and virulence is presented.
- Experimental evidnece for hysteresis in the cell cycles of Xenopus Laevis egg extractsSha, Wei (Virginia Tech, 2002-08-05)In 1993, Novak and Tyson published a comprehensive mathematical model of the regulation of M-phase promoting factor (MPF) activity in Xenopus laevis eggs and egg extracts. Although this model was in agreement with existing and subsequent experimental data, fundamental predictions that the cell cycle is driven by a hysteresis loop have never been validated experimentally. The model's predictions of bifurcations that create and destroy MPF activity, indicative of hysteresis, were tested in this study. Prediction 1: The threshold concentration of cyclin B required to activate MPF is measurably higher than the threshold concentration required to inactivate MPF. The difference in thresholds implies that the MPF control system is hysteretic and bistable. To measure these thresholds, extracts in interphase or M-phase were supplemented with varying concentrations of non-degradable human cyclin B1 protein. MPF activity was determined by the morphology of sperm nuclei and by assays of histone H1 kinase activity. Consistent with the model, the activation threshold was determined to be 40 nM, which is two-fold higher than the inactivation threshold, 20 nM. Prediction 2: For cyclin levels marginally above the activation threshold concentration of cyclin B, there is a dramatic "slowing-down" in the rate of MPF activation. Supra-threshold concentrations of nondegradable cyclin B1 were added to cycloheximide-treated CSF-released extracts, and samples taken at various time-points were analyzed for MPF activity. At 40 nM cyclin B1, just above the activation threshold, the lag time for MPF activation was 45 - 60 minutes; at 50 nM cyclin B1, the lag time was between 30 - 45 minutes; and at 60 nM or higher concentrations of cyclin B1, the lag time was 20 - 30 minutes, thus confirming the prediction of the Novak-Tyson model. Prediction 3: DNA replication checkpoint increases the activation threshold concentration of cyclin B by increasing the hysteresis loop. Cycloheximide-treated, CSF-released extracts containing 1200 sperm nuclei/μl were treated with aphidicolin, then supplemented with varying concentrations of nondegradable cyclin B1. The activation threshold was 100 nM, 2.5 fold higher than in extracts lacking aphidicolin. Conclusions: These studies confirm three predictions of the Novak-Tyson model and indicate that hysteresis underlies cell cycle control in Xenopus egg extracts. These experiments validate use of mathematical models to study complex biological control systems such as the eukayotic cell cycle.
- Identification and Characterization of Late Pathway Enzymes in Phytic Acid Biosynthesis in Glycine maxStiles, Amanda Rose (Virginia Tech, 2007-07-30)Phytic acid, also known as myo-inositol hexakisphosphate or Ins(1,2,3,4,5,6)P6, is the major storage form of phosphorus in plant seeds. Phytic acid is poorly digested by non-ruminant animals such as swine and poultry, and it chelates mineral cations including calcium, iron, zinc, and potassium, classifying it as an anti-nutrient. The excretion of unutilized phytic acid in manure translates to an excess amount of phosphorus runoff that can lead to eutrophication of lakes and ponds. Understanding the phytic acid biosynthetic pathway will allow for the development of low phytic acid (lpa) soybeans by the down-regulation of specific genes. The goal of this research was to elucidate the pathway(s) for phytic acid biosynthesis in soybean (Glycine max). We have isolated several myo-inositol phosphate kinase genes in soybean as possible candidates for steps in the biosynthetic pathway. We have characterized the genes for four myo-inositol(1,3,4)P3 5/6-kinases (GmItpk1-4), one myo-inositol(1,4,5)P3 6/3/5-kinase (GmIpk2), and one myo-inositol(1,3,4,5,6)P5 2-kinase (GmIpk1). We have examined expression in developing seeds and other tissues by Northern blot analysis and quantitative RT-PCR. We have expressed all six genes as tagged fusion proteins in E. coli, and verified enzyme activity on the proposed substrates. For each enzyme, we have conducted biochemical characterization to determine enzyme kinetics and substrate specificities. We have verified in vivo activity of GmIpk2 and GmIpk1 by complementing yeast mutants in the respective genes. Our studies indicate the likelihood that three of the genes may be involved in phytic acid biosynthesis: GmItpk3, GmIpk2 and GmIpk1. For future work, to more fully understand the contribution of each kinase gene to phytic acid biosynthesis, an RNA interference approach will be employed. The gene sequences identified in this study will be used to construct silencing vectors for use in future transformation of soybean embryogenic cultures to determine the effects of down-regulation on myo-inositol phosphate profiles.
- Incorporation of Physico-Chemical Parameters Into Design of Microarray ExperimentsRatushna, Vladyslava G. (Virginia Tech, 2005-05-06)Microarrays containing long oligonucleotides provide sensitive and specific detection of gene expression and are becoming a popular experimental platform. In the process of designing an oligonucleotide microarray for Brucella, we optimized the overall design of the array and created probes to distinguish among the known Brucella species. A 3-way genome comparison identified a set of genes which occur uniquely in only one or two of the sequenced Brucella genomes. Reverse transcriptase PCR assays of over one hundred unique and pairwise-differential regions identified in Brucella revealed several groups of genes that are transcribed in vivo with potential significance for virulence. The structural and thermodynamic properties of a set of 70mer oligonucleotide probes for a combined B. abortus, B. melitensis and B. suis microarray were modeled to help perform quantitative interpretation of the microarray data. Prediction and thermodynamic analysis of secondary structure formation in a genome-wide set of transcripts from Brucella suis 1330 demonstrated that properties of the target molecule have the potential to strongly influence the rate and extent of hybridization between transcript and an oligonucleotide probe in a microarray experiment. Despite relatively high hybridization temperatures used in the modeling process, parts of the target molecules are predicted to be inaccessible to intermolecular hybridization due to the formation of stable intramolecular secondary structure. Features in the Brucella genomes with potential diagnostic use were identified, and the extent to which target secondary structure, a molecular property which is not considered in the array design process, may influence the quality of results was characterized.
- Microarray data analysis methods and their applications to gene expression data analysis for Saccharomyces cerevisiae under oxidative stressSha, Wei (Virginia Tech, 2006-05-12)Oxidative stress is a harmful condition in a cell, tissue, or organ, caused by an imbalance between reactive oxygen species or other oxidants and the capacity of antioxidant defense systems to remove them. These oxidants cause wide-ranging damage to macromolecules, including proteins, lipids, DNA and carbohydrates. Oxidative stress is an important pathophysiologic component of a number of diseases, such as Alzheimer's disease, diabetes and certain cancers. Cells contain effective defense mechanisms to respond to oxidative stress. Despite much accumulated knowledge about these responses, their kinetics, especially the kinetics of early responses is still not clearly understood. The Yap1 transcription factor is crucial for the normal response to a variety of stress conditions including oxidative stress. Previous studies on Yap1 regulation started to measure gene expression profile at least 20 minutes after the induction of oxidative stress. Genes and pathways regulated by Yap1 in early oxidative stress response (within 20 minutes) were not identified in these studies. Here we study the kinetics of early oxidative stress response induced by the cumene hydroperoxide (CHP) in Saccharomyces cerevisiae wild type and yap1 mutant. Gene expression profiles after exposure to CHP were obtained in controlled conditions using Affymetrix Yeast Genome S98 arrays. The oxidative stress response was measured at 8 time points along 120 minutes after the addition of CHP, with the earliest time point at 3 minute after the exposure. Statistical analysis methods, including ANOVA, k-means clustering analysis, and pathway analysis were used to analyze the data. The results from this study provide a dynamic resolution of the oxidative stress responses in S. cerevisiae, and contribute to a richer understanding of the antioxidant defense systems. It also provides a global view of the roles that Yap1 plays under normal and oxidative stress conditions.
- Molecular targets for rapid identification of BrucellasppRatushna, Vladyslava G.; Sturgill, David M.; Ramamoorthy, Sheela; Reichow, Sherry A.; He, Yongqun; Lathigra, Raju; Sriranganathan, Nammalwar; Halling, Shirley M.; Boyle, Stephen M.; Gibas, Cynthia J. (2006-02-22)Background Brucella is an intracellular pathogen capable of infecting animals and humans. There are six recognized species of Brucella that differ in their host preference. The genomes of the three Brucella species have been recently sequenced. Comparison of the three revealed over 98% sequence similarity at the protein level and enabled computational identification of common and differentiating genes. We validated these computational predictions and examined the expression patterns of the putative unique and differentiating genes, using genomic and reverse transcription PCR. We then screened a set of differentiating genes against classical Brucella biovars and showed the applicability of these regions in the design of diagnostic tests. Results We have identified and tested set of molecular targets that are associated in unique patterns with each of the sequenced Brucella spp. A comprehensive comparison was made among the published genome sequences of B. abortus, B. melitensis and B. suis. The comparison confirmed published differences between the three Brucella genomes, and identified subsets of features that were predicted to be of interest in a functional comparison of B. melitensis and B. suis to B. abortus. Differentiating sequence regions from B. abortus, B. melitensis and B. suis were used to develop PCR primers to test for the existence and in vitro transcription of these genes in these species. Only B. suis is found to have a significant number of unique genes, but combinations of genes and regions that exist in only two out of three genomes and are therefore useful for diagnostics were identified and confirmed. Conclusion Although not all of the differentiating genes identified were transcribed under steady state conditions, a group of genes sufficient to discriminate unambiguously between B. suis, B. melitensis, and B. abortus was identified. We present an overview of these genomic differences and the use of these features to discriminate among a number of Brucella biovars.
- Secondary structure in the target as a confounding factor in synthetic oligomer microarray designRatushna, Vladyslava G.; Weller, Jennifer W.; Gibas, Cynthia J. (2005-03-08)Background Secondary structure in the target is a property not usually considered in software applications for design of optimal custom oligonucleotide probes. It is frequently assumed that eliminating self-complementarity, or screening for secondary structure in the probe, is sufficient to avoid interference with hybridization by stable secondary structures in the probe binding site. Prediction and thermodynamic analysis of secondary structure formation in a genome-wide set of transcripts from Brucella suis 1330 demonstrates that the properties of the target molecule have the potential to strongly influence the rate and extent of hybridization between transcript and tethered oligonucleotide probe in a microarray experiment. Results Despite the relatively high hybridization temperatures and 1M monovalent salt imposed in the modeling process to approximate hybridization conditions used in the laboratory, we find that parts of the target molecules are likely to be inaccessible to intermolecular hybridization due to the formation of stable intramolecular secondary structure. For example, at 65°C, 28 ± 7% of the average cDNA target sequence is predicted to be inaccessible to hybridization. We also analyzed the specific binding sites of a set of 70mer probes previously designed for Brucella using a freely available oligo design software package. 21 ± 13% of the nucleotides in each probe binding site are within a double-stranded structure in over half of the folds predicted for the cDNA target at 65°C. The intramolecular structures formed are more stable and extensive when an RNA target is modeled rather than cDNA. When random shearing of the target is modeled for fragments of 200, 100 and 50 nt, an overall destabilization of secondary structure is predicted, but shearing does not eliminate secondary structure. Conclusion Secondary structure in the target is pervasive, and a significant fraction of the target is found in double stranded conformations even at high temperature. Stable structure in the target has the potential to interfere with hybridization and should be a factor in interpretation of microarray results, as well as an explicit criterion in array design. Inclusion of this property in an oligonucleotide design procedure would change the definition of an optimal oligonucleotide significantly.