Browsing by Author "Gilley, Robert S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Densitometric Comparison of Autogenous Cancellous Bone Graft and Extracorporeal Shock Wave Therapy in the Tibial Tuberosity Advancement Procedure in DogsBarnes, Katherine Hirose (Virginia Tech, 2015-07-01)Objectives: To compare optical values in the osteotomy gap created after a Tibial Tuberosity Advancement (TTA) treated with autogenous cancellous bone graft (ACBG), extracorporeal shock wave therapy (ESWT), a combination of ACBG and ESWT, and absence of both ACBG and ESWT using densitometry. Methods: Dogs presenting for surgical repair of a cranial cruciate ligament rupture were randomly assigned to one of four groups; TTA with ACBG (TTA-G), TTA with ACBG and ESWT (TTA-GS), TTA with ESWT (TTA-S), and TTA with no additional therapy (TTA-O). Mediolateral radiographs at 0, 4 and 8 weeks after surgery were evaluated to compare healing of the osteotomy gap via densitometry. An analysis of variance (ANOVA) statistical analysis was used to compare the densitometric values between groups. Results: At 4 weeks after surgery, a significant difference in osteotomy gap density was noted between TTA-GS (8.4 millimeters of Aluminum equivalent [mmAleq]) and TTA-S (6.1mmAleq), and between TTA-GS (8.4 mmAleq) and TTA-O (6.4 mmAleq). There were no significant differences noted between groups at the 8 week recheck. Clinical Significance: There were no significant differences in the osteotomy gap density at 8 weeks after surgery regardless of the treatment modality used. The combination of ACBG and ESWT may lead to increased density of the osteotomy gap in the first 4 weeks after surgery. Densitometry using an aluminum step wedge is a feasible method for comparison of bone healing after TTA in dogs.
- Long-term Formation of Aggressive Bony Lesions in Dogs with Mid-Diaphyseal Fractures Stabilized with Metallic Plates: Incidence in a Tertiary Referral Hospital PopulationGilley, Robert S.; Hiebert, Elizabeth; Clapp, Kemba; Bartl-Wilson, Lara; Nappier, Michael T.; Werre, Stephen R.; Barnes, Katherine (2017)The incidence of complications secondary to fracture stabilization, particularly osteolytic lesions and bony tumor formation, has long been difficult to evaluate. The objective of this study was to describe the long-term incidence of aggressive bony changes developing in dogs with long bone diaphyseal fractures stabilized by metallic bone plates compared to a breed-, sex-, and age-matched control group. The medical records of a tertiary referral center were retrospectively reviewed for dogs that matched each respective criterion. Signalment, history, cause of death (if applicable), and aggressive bony changes at previous fracture sites were recorded. Ninety dogs met the criteria for inclusion in the fracture group and were matched with appropriate control dogs. Four of the dogs in the fracture group developed aggressive bony changes at the site of previous fracture repairs most consistent with osseous neoplasia. One lesion was confirmed with cytology as neoplastic. The population of dogs was mixed with regard to breed and body weight, but all dogs with aggressive bony lesions were male. Incidence of aggressive bony lesion formation in the fracture group was 4 (4.4%) and was 0 (0%) in the control group; three (75%) of the affected dogs in the fracture group included cerclage as a component of their primary fracture stabilizations. Incidence of aggressive bony lesions in the fracture group compared to the control group was determined to be statistically significant (p = 0.0455), as was the incidence of cerclage among dogs affected by aggressive bony lesions compared to the rest of the fracture group (p = 0.0499). Development of aggressive bony lesions is an uncommon complication of fracture fixation. Additional research is needed to further identify and elucidate the long-term effects of metallic implants in dogs.
- Mechanical Comparison of a Type II External Skeletal Fixator and Locking Compression Plate in a Fracture Gap ModelMuro, Noelle Marie (Virginia Tech, 2017-06-16)The purpose of this study was to compare the stiffness of a Type II external skeletal fixator (ESF) to a 3.5 mm locking compression plate (LCP) in axial compression, mediolateral, and craniocaudal bending in a fracture gap model. The hypothesis was that the Type II ESF would demonstrate comparable stiffness to the LCP. A bone simulant consisting of short fiber reinforced epoxy cylinders and a 40 mm fracture gap was used. The LCP construct consisted of a 12 hole 3.5 mm plate with three 3.5 mm bicortical locking screws per fragment. The Type II ESF construct consisted of 3 proximal full fixation pins (Centerface®) per fragment in the mediolateral plane, and 2 carbon fiber connecting rods. Five constructs of each were tested in non-destructive mediolateral and craniocaudal bending, and axial compression. Stiffness was determined from the slope of the elastic portion of force-displacement curves. A one-way ANOVA and a Tukey-Kramer multiple comparisons test were performed, with significance defined as p < 0.05. In mediolateral bending, the stiffness of the Type II ESF (mean ± standard deviation; 1584.2 N/mm ± 202.8 N/mm) was significantly greater than that of the LCP (110.0 N/mm ± 13.4 N/mm). In axial compression, the stiffness of the Type II ESF (679.1 N/mm ± 20.1 N/mm) was significantly greater than that of the LCP (221.2 N/mm ± 19.1 N/mm). There was no significant difference between the constructs in craniocaudal bending. This information can aid in decision-making for fracture fixation, although ideal stiffness for healing remains unknown.