Browsing by Author "Goel, Garvit"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ComputeCOVID19+: Accelerating COVID-19 Diagnosis and Monitoring via High-Performance Deep Learning on CT ImagesGoel, Garvit; Gondhalekar, Atharva; Qi, Jingyuan; Zhang, Zhicheng; Cao, Guohua; Feng, Wu-chun (ACM, 2021-10-05)The COVID-19 pandemic has highlighted the importance of diagnosis and monitoring as early and accurately as possible. However, the reverse-transcription polymerase chain reaction (RT-PCR) test results in two issues: (1) protracted turnaround time from sample collection to testing result and (2) compromised test accuracy, as low as 67%, due to when and how the samples are collected, packaged, and delivered to the lab to conduct the RT-PCR test. Thus, we present ComputeCOVID19+, our computed tomography-based framework to improve the testing speed and accuracy of COVID-19 (plus its variants) via a deep learning-based network for CT image enhancement called DDnet, short for DenseNet and Deconvolution network. To demonstrate its speed and accuracy, we evaluate ComputeCOVID19+ across several sources of computed tomography (CT) images and on many heterogeneous platforms, including multi-core CPU, many-core GPU, and even FPGA. Our results show that ComputeCOVID19+ can significantly shorten the turnaround time from days to minutes and improve the testing accuracy to 91%.
- Real-Time Computed Tomography-based Medical Diagnosis Using Deep LearningGoel, Garvit (Virginia Tech, 2022-02-24)Computed tomography has been widely used in medical diagnosis to generate accurate images of the body's internal organs. However, cancer risk is associated with high X-ray dose CT scans, limiting its applicability in medical diagnosis and telemedicine applications. CT scans acquired at low X-ray dose generate low-quality images with noise and streaking artifacts. Therefore we develop a deep learning-based CT image enhancement algorithm for improving the quality of low-dose CT images. Our algorithm uses a convolution neural network called DenseNet and Deconvolution network (DDnet) to remove noise and artifacts from the input image. To evaluate its advantages in medical diagnosis, we use DDnet to enhance chest CT scans of COVID-19 patients. We show that image enhancement can improve the accuracy of COVID-19 diagnosis (~5% improvement), using a framework consisting of AI-based tools. For training and inference of the image enhancement AI model, we use heterogeneous computing platform for accelerating the execution and decreasing the turnaround time. Specifically, we use multiple GPUs in distributed setup to exploit batch-level parallelism during training. We achieve approximately 7x speedup with 8 GPUs running in parallel compared to training DDnet on a single GPU. For inference, we implement DDnet using OpenCL and evaluate its performance on multi-core CPU, many-core GPU, and FPGA. Our OpenCL implementation is at least 2x faster than analogous PyTorch implementation on each platform and achieves comparable performance between CPU and FPGA, while FPGA operated at a much lower frequency.