Browsing by Author "Gogal, Robert M. Jr."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Adaptation of Three Different Apoptotic Methods in Equine Bronchoalveolar Cells and Comparison of Bronchoalveolar Lavage Cell Apoptosis in Normal and COPD Affected Horses Before and After Dexamethasone AdministrationLeichner, Teri Lynn (Virginia Tech, 2001-06-21)Recent studies suggest that lymphocyte apoptosis serves to regulate pulmonary inflammation. Equine COPD, an allergic disease of the lower airway, is likely due to dysregulation of the pulmonary immune response. In this study, the hypothesis tested was COPD affected horses would have less apoptotic airway lymphocytes than control horses during clinical disease. To achieve this, 3 methods of measuring apoptosis, Vindelov's propidium iodide with Triton-X (PI/Triton-X), 7-aminoactinomycin D (7-AAD), and Annexin V with propidium iodide (Annexin/PI) were evaluated in equine airway lymphocytes. A significant linear relationship was found for equine bronchoalveolar lavage (BAL) lymphocytes stained with 7-AAD and Annexin/PI . No relationship was identified with cells stained with PI/Triton-X and Annexin/PI, and 7-AAD and PI/Triton-X indicating that methods which preserve cell membrane characteristics are more comparable when measuring BAL lymphocytes apoptosis in a heterogeneous population of cells. Additionally, all stains appear to perform the same in COPD and normal horses in remission and disease. Comparison of predominately BAL lymphocyte apoptosis using the above methods were performed at baseline, after natural challenge, and after dexamethasone administration in nine horses, five of which were affected with COPD. No differences in bronchoalveolar lavage lymphocyte apoptosis between COPD and control horses were detected either before or after dexamethasone administration, although numerical trends in COPD horses identified less apoptosis after natural challenge indicating that defective apoptosis may play a role in equine COPD pathogenesis. Dexamethasone administration was associated with trends of improvement in the pulmonary gas exchange and increased apoptosis toward baseline in the COPD horses.
- Characterization of Canine Leishmaniasis in the United States: Pathogenesis, Immunological Responses, and Transmission of an American Isolate of Leishmania infantumRosypal, Alexa C. (Virginia Tech, 2005-04-06)Leishmania infantum, an etiologic agent of zoonotic visceral leishmaniasis, has recently emerged in the foxhound population in the United States and parts of Canada. Leishmania infections are usually spread to mammals by infected sand flies, however epidemiological data do not support a role for sand fly transmission in North America. The purpose of this work was to isolate and characterize L. infantum from a naturally infected foxhound from Virginia (LIVT-1 isolate). A mouse model of North American leishmaniasis was developed using immunocompetent and genetically immunodeficient mouse strains infected with LIVT-1 promastigotes by different inoculation routes. The intravenous route of infection was superior to the subcutaneous route for inducing consistent experimental infections and mice lacking interferon gamma, inducible nitric oxide synthase, or B-cells were resistant to clinical disease. Experimental infections in dogs were performed to examine the infectivity, immune responses, and pathogenicity of LIVT-1. Experimentally infected dogs developed parasitologically proven infections and a range of clinical manifestations that were similar to those observed in naturally occurring disease. Diagnostic tests including culture and cytologic evaluation of bone marrow and lymph node aspirates, polymerase chain reaction, and serology by indirect fluorescent antibody test, and recombinant K39 (rK39) immunoassay were evaluated. Kappa statistics revealed that PCR had the highest level of agreement with culture and cytology results although the rK39 dipstick assay consistently identified more experimentally infected dogs. Flow cytometry revealed no significant differences (p>0.05) in CD4+ or CD8+ expression on peripheral blood lymphocytes. Alternate transmission mechanisms in experimentally inoculated mice and dogs were investigated. PCR revealed a low level of vertical and direct transmission of LIVT-1 in inoculated BALB/c mice. Leishmania DNA was detectable by PCR in tissues from puppies from a LIVT-1 infected beagle. Although the strain of L. infantum infecting foxhounds in North America appears to predominantly use a non-vector transmission mode, the disease it produces is similar to canine leishmaniasis in other parts of the world. Non-sand fly transmission may be responsible for maintaining infections in the foxhound population. Results from this work will lead to improvement in diagnosis, clinical management, and control of canine leishmaniasis in North America.
- Comparative Immunological Effects of a Natural Estrogen (17β-estradiol) versus a Pharmacologic Synthetic Estrogen (17α-ethinyl estradiol)Brummer, Tyson Peter Thomas (Virginia Tech, 2007-07-31)Exposure to exogenous estrogens such as synthetic 17α-ethinyl estradiol (EE) occurs via multiple sources (i.e. hormonal contraceptives, environmental contamination, hormone replacement therapy). The natural estrogen, 17β-estradiol (E2), is a well-studied immunomodulatory hormone at both environmental and pharmacologic levels. Conversely, little data exist regarding the immune effects of EE at either environmentally-relevant exposure levels or at pharmacological levels. Further, EE is delivered to patients in a clinical setting via different routes of exposure (e.g. subcutaneous or oral). Many key questions in relation to potential immunological effects of EE are unanswered. Important variables in estrogen-modulation of the immune system include: (i) dose, (ii) age, (iii) gender, and (iv) route of exposure. Thus, pertinent questions emerge. Does exposure to EE at low concentrations for a subacute duration affect the immune or reproductive systems? Are the effects similar in both hormones and between sexes? Are these effects similar in juvenile and aged mice? How do the effects compare across two common routes of exposure (subcutaneous versus oral)? To address these questions, three separate studies were performed. In the first study, we investigated whether very low, but environmentally relevant, doses of EE, E2 (10 ng/kg body weight), or vehicle orally administered every other day for 21 days to young (6 week-old) and aged (>15 month-old) C57BL/6 mice had immunomodulatory effects. As expected, significant gender and age-related differences were noted with regard to thymus weight, thymocyte recovery, spleen weight, and splenocyte recovery. However, low dose treatment of either E2 or EE had no marked effects on the thymus or spleen organ to body weight ratios, cell numbers, or lymphocyte subsets. Low dose oral estrogens did not alter the ability of activated splenocytes to induce interferon-γ or nitric oxide. No effects on male reproductive organ to BW ratios of young or aged mice were found. Similarly, with the exception of E2-stimulating effects on the female reproductive tract of young mice, there were no pronounced effects in females. In separate studies, intact juvenile female and male C57BL/6 mice were given daily subcutaneous (second study) or oral (third study) doses of either EE or E2 (0.04, 0.4, or 4.0 μg per 25 g BW) for 21 days. In the subcutaneous exposure study, both EE and E2 morphologically altered uterine and seminal vesicle weights. However, EE had a more pronounced effect compared to E2, especially in males, even at the lowest dose administered. Additionally, like E2, EE induced thymic atrophy in both sexes. In female mice, thymic atrophy and thymic cellularity were significantly decreased by subcutaneous EE and E2 at doses of 0.4 and 4.0 μg/25 g body weights. EE elicited significantly more pronounced thymic atrophy-inducing effects compared to E2 at the 4.0 μg/25g dose. In males, thymocyte cellularity was decreased by both subcutaneous EE and E2 only at the highest dose tested (4.0 μg/25 g body weight), whereas only 4.0 EE significantly decreased thymus to body weight ratios. Neither splenic weights, splenic cellularity, nor splenic cell phenotype were affected by either estrogenic compound regardless of route of exposure. Oral exposure of EE or E2 did not induce marked immunological effects. Collectively, these data demonstrate that select thymic and reproductive endpoints are significantly altered following a 21-day subcutaneous exposure to either EE or E2 and that the thymus is a more sensitive target than the spleen with regard to subacute exposure to EE. In addition, EE at a comparable dose was more potent than E2 at exerting thymic and reproductive organ morphological alterations. Furthermore, route of administration is critical, as subcutaneous exposure induced far more dramatic thymic and reproductive morphological alterations than did oral administration. Future studies need to address the precise mechanism through which EE induces thymic atrophy and diminished thymus cellularity. Are these effects mediated directly through the thymus, perhaps through estrogen-induced increased thymocyte apoptosis or alterations to thymic epithelial cells? Or could EE be mediating alterations via bone marrow stem cells targeted for distribution to the thymus? Our novel findings regarding EE-induced effects on the thymus are of health significance and set the stage for future work.
- Developmental Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin: Induced and Exacerbated Autoimmunity in AdulthoodMustafa, Amjad Issa (Virginia Tech, 2008-12-18)Developmental 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exposure can permanently alter immune system ontogeny, resulting in the dysregulation of a number of vital immune pathways. We hypothesized that developmental exposure to TCDD may also impair the establishment of self-tolerance, resulting in an increased risk of autoimmunity. For example, we observed that a single prenatal TCDD exposure given to non-autoimmune-prone high affinity aryl hydrocarbon receptor (AhR) C57BL/6 mice resulted in an immune complex-mediated autoimmune disease during the adult stage. Further using a similar TCDD exposure protocol, autoimmune-prone low affinity AhR SNF1 mice exhibited acceleration and exacerbation of lupus-like nephritis in adulthood. Examination of these mice showed that perinatal TCDD exposure adversely affected both primary immune organs of the adaptive immune system. In the thymic compartment, prenatal TCDD affected thymocyte cellularity, differentiation and maturation as well as central tolerance as indicated by high levels of autoreactive Vβ TCR T cells in the periphery. Prenatal TCDD also altered bone marrow B lymphopoiesis and B cell maturation and differentiation in the spleen. Functionally, these B cell changes resulted in high serum autoantibodies titers to dsDNA, ssDNA and cardiolipin suggesting a loss in central B cell tolerance. The functional assessment of T cells, via cytokine production showed that prenatal TCDD mice altered Th1/Th2 levels. As a result, significant changes were detected in the kidney characterized by increased immune complex deposition in the glomeruli, lymphocytic infiltration and general pathologic changes. This would suggest that multiple immune pathways are affected by prenatal TCDD and work either independently or synergistically to display immune-mediated disease during aging. Importantly, this study has also shown that the sex of an individual appears to influence both the type of immune pathways affected by TCDD as well as the progression and severity of the autoimmunity. In summary, these studies clearly demonstrate that postnatal immune system impairment due to prenatal TCDD exposure is not limited to immunosuppression but also can include inappropriate immune activation manifested as a hypersensitivity that can lead to the onset of autoimmune disease.
- Fibrosarcoma-induced Dysregulation of Interleukin (IL)-1β and IL-18 Activities and their Modulation by PaclitaxelFalwell, Elizabeth Paige (Virginia Tech, 2005-06-07)Cancer remains an elusive killer due, in part, to the suppression of normal immunologic antitumor responses. Normal host (NH) macrophage (Mϕ) populations have tumoricidal effects such as tumor antigen phagocytosis and presentation, and cytokine production. Tumor-infiltrating Mϕs may evade these activities by dysregulating production of immunostimulatory cytokines (including Interleukin [IL]-1β, IL-18, and tumor necrosis factor-α [TNF-α]), by production of antagonistic factors. The restoration of IL-1β, IL-18, and TNF-α production by Mϕs could re-establish antitumor host immune responses. Previous work in our laboratory suggests that tumor distal (TD) Mϕs produce more IL-1β than NH Mϕs when stimulated with IFN-γ and lipopolysaccharide (LPS). We hypothesize that the presence of immunomodulatory factors like IL-10 and TGF-β dysregulate IL-1β production in tumor proximal (TP) Mϕs. Indeed, IL-1β production was downregulated among in situ TP Mϕs. We have proposed that IL-18, a structural homologue to IL-1β was similarly dysregulated in TD and TP Mϕs. IL-18 was enhanced in both distal and proximal Mϕs. Differences in the functions of these cytokines could account for this dissimilarity. TNF-α, another proinflammatory cytokine, followed the dysregulation pattern of IL-1β in our tumor-burdened hosts (TBH), likely because of the similar functions of these cytokines. Because it is a potential vehicle for immunotherapeutic treatment, paclitaxel's action on the immune response (TAXOL™) was investigated. Paclitaxel is a potent Mϕ activator that upregulates a variety of cytokines in an LPS-like manner. Paclitaxel enhanced TD Mϕ production of IL-1β, IL-18, and TNF-α in an LPS-like manner. Production of IL-1β and TNF-α was reduced in TP Mϕs when treated with paclitaxel; however, IL-18 production was enhanced. This difference could be due to the different functions of IL-1β and IL-18. To determine whether production of these cytokines translates into downstream expression of transcription products, IL-12 and nitric oxide (NO) were assayed. NO was enhanced distally, but paclitaxel treatment failed to enhance NO production. When treated with paclitaxel, IL-12 was produced by NH and TD Mϕs. Collectively, these studies suggest that tumor-induced cytokine imbalances compromise antitumor immunity and paclitaxel may reverse this activity.
- Immune Cell Subsets Direct or Antagonize Tumor Immunity: Promotion of TH1 Responses in Tumor VaccinationPressley, Jennifer Sparkman (Virginia Tech, 2005-06-02)Tumors evade immune system tumor-controlling functions. T cells critical to antitumor immunity are tolerogenic in tumor-burdened animals, and fail to lyse neoplastic cells. Our goal was to investigate the kinetics of immune dysfunction related to tumor-burdened host (TBH) memory T cell responses (or the lack thereof). We demonstrate tumor growth impairs T cell activation by modulating CD4+ T cell infiltration and systemic CD44 and CD62L activation marker expression, and by downregulating TBH TH1 cytokine production by splenic CD4+ T cells. Since chemotherapeutic treatments have potent cytostatic effects, we posited they enhance T cell dysfunctionality; which leads to limited therapeutic efficacy. Paclitaxel is a potent chemotherapeutic agent currently being administered in Stage III clinical trials; however, it reduces T cell proliferative capacity and interferon-γ (IFN-γ) production. In contrast, our data suggest that administration of low dose paclitaxel prolongs adaptive immunity in a limited capacity. We show paclitaxel enhances CD4highCD62Llow cell populations that drive TH1 cytokine production and prolongs the production of interleukin-2 (IL-2) in TBHs. We hypothesize that the initiation and maintenance of activated TH1 cell populations in patients during therapy serves as a reliable prognostic indicator of a favorable therapeutic response. Paclitaxel's limited therapeutic effects are due, in part, to its suppression of T cell activities; but the administration of low dose chemotherapy in combination with immunotherapeutic agents temporally takes advantage of paclitaxel's immunostimulatory capabilities. Our work will enhance current understanding of immune dysregulation during cancer development, and promote advances in the monitoring and development of combinatorial cancer treatments.
- Immunotoxicity of Dermal Permethrin and Cis-Urocanic Acid: Effects of Chemical Mixtures in Environmental HealthPrater, Mary R. (Virginia Tech, 2002-03-08)The present study examined adverse effects of sunlight exposure (mimicked by intradermal cis-urocanic acid, cUCA) on local and systemic immune responses, with or without co-exposure to the immunotoxic insecticide permethrin. A single exposure to cUCA caused diminished splenic macrophage phagocytosis that was persistent up to 30 days post-exposure. Five-day exposure to cUCA subtly increased splenocyte proliferation in response to the T cell mitogen Concanavalin A. Four-week exposure to cUCA caused increased splenic lymphocyte cellularity, thymic hypocellularity, and enhanced hydrogen peroxide production by splenic leukocytes. Single exposure to topical permethrin resulted in decreased thymic and splenic weight and cellularity, and inhibited antibody production by splenic B cells. cUCA worsened the negative effect of permethrin on both thymic weight and cellularity, and depressed splenocyte blastogenesis, hydrogen peroxide production, and antibody production. Five-day exposure to either cUCA or permethrin also caused persistent decreased contact hypersensitivity responses, an effect that became more than additive when the chemicals were administered concurrently. Defects in antigen processing and presentation by cutaneous Langerhans cells were evaluated as possible contributing mechanisms to the cutaneous immunosuppression, using mice with deleted genes. Vehicle-exposed IFNg knockout mice displayed approximately a 22.1% depression in the ear swelling response as compared to control C57BL/6N mice, suggesting that this cytokine may be required for mounting a control-level hypersensitivity response. Ear swelling in cUCA-exposed IFNg knockout mice displayed a 21.4% depressed response as compared to cUCA-exposed wild-type C57BL/6N mice, again suggesting that IFNg is an important cytokine in the contact hypersensitivity (CH) response. TNFaR knockout mice exposed to cUCA displayed 33.9% greater ear swelling than cUCA-exposed wild-type C57BL/6N mice, suggesting that increased TNFa may be involved in inhibited CH by cUCA. TNFaR knockout mice exposed to permethrin displayed 33.9% greater ear swelling than permethrin-exposed C57BL/6N mice, suggesting that increased TNFa may also be involved in inhibited CH by permethrin. C57BL/6N mice exposed to cUCA + permethrin displayed severe reduction of the CH response to 8.7% of the control level. IFNg knockout mice exposed to permethrin + cUCA showed essentially identical depression of the CH response as IFNg knockout mice exposed to either permethrin or cUCA alone. These results suggest that IFNg is required for the greater than additive immunotoxic effect that occurred when these two agents were co-administered. TNFaR knockout mice exposed to cUCA + permethrin displayed 8.7 fold greater ear swelling than similarly exposed C57BL/6N mice, again suggesting that increased TNFa is involved in inhibited CH by both cUCA and permethrin.
- Immunotoxicity of Pesticide Mixtures and the Role of Oxidative StressOlgun, Selen (Virginia Tech, 1998-08-04)The immunotoxic effects of multiple pesticide exposure were evaluated. C57BL/6 mouse thymocytes were exposed to lindane, malathion, and permethrin, either separately or in mixtures of two pesticides, in concentrations ranging from 37.5 uM to 1mM. These exposures caused both apoptotic and necrotic cell death in thymocytes as evaluated by 7-aminoactinomycin-D, Annexin-V/PI, and lactate dehydrogenase release assays. When cells were exposed to lindane+malathion, or lindane+permethrin, a significantly greater-than-additive cytotoxicity was observed. The pesticide exposure caused DNA ladder formation with increased laddering in mixtures. Further, the effect of these pesticides on thymocyte oxidative stress was investigated. Thymocytes treated with any of these pesticides generated superoxide and H2O2. The lindane + malathion caused more-than-additive increase in superoxide production compared to single treatments of these pesticides. However, the effect of the lindane + permethrin was not significantly different from individual components of this mixture. The effects of pesticides on antioxidant enzymes were also investigated and only mixtures were found to have significant effects. Alteration in transcription factor NFkB level was measured as an indicator of oxidative stress in thymocytes following 12 h pesticide exposure, in vitro. Only lindane + malathion was found to increase the protein level. Furthermore, the effects of pesticides and their mixtures on immune functions of mice were studied in vivo. Animals (8-12 week old, male mice) were randomly divided into groups of six and injected intraperitoneally with three different doses (one-half, one-third, one-fourth, or one-eight of LD50) of individual pesticides. Exposure to individual pesticides did not alter the thymus/body or spleen/body weight ratios, thymic or splenic cell counts, or CD4/CD8 or CD45/CD90 ratios. However, anti-sRBC plaque forming cell (PFC) counts were significantly lowered with all treatments. Two other groups of animals were injected with lindane + malathion or lindane + permethrin at one-third of the LD50 of each pesticide. Exposure to pesticide mixtures did not alter the CD4/CD8 or CD45/CD90 ratios. However, the thymus/ and spleen/body weight ratios, thymic and splenic cell counts, and PFC counts were significantly lowered. These data indicate that lindane, malathion, and permethrin are immunotoxic and their mixtures can cause higher toxicity compared to individual exposures. In addition, these data support the hypothesis that oxidative stress were induced in thymocytes by exposure to these pesticides in vitro.
- Investigation of Immune Response to Sarcocystis neurona Infection in Horses with Equine Protozoal MyeloencephalitisYang, Jibing (Virginia Tech, 2005-07-14)Equine Protozoal Myeloencephalitis (EPM) is a serious neurologic disease of horses in the United States. The primary etiologic agent is Sarcocystis neurona (S. neurona). Currently, there is limited knowledge regarding the protective or pathologic immune response to infection to the intracellular protozoa S. neurona. The objective of these studies was to determine the effects of S. neurona infection on the immune response of horses that had EPM due to natural infection (experiment 1) and experimental infection (experiment 2). In experiment 1, twenty-two horses with naturally occurring cases of EPM, which were confirmed positive based on detection of antibodies in the serum and/or CSF and clinical signs, and 20 clinically normal horses were included to determine whether S. neurona altered the immune responses, as measured by immune cell subsets (CD4, CD8, B-cell, monocytes, and neutrophils) and leukocyte proliferation (antigen specific and non-specific mitogens). Our results demonstrated that naturally infected horses had significantly higher percentages of CD4 and neutrophils (PMN) in peripheral blood mononuclear cells (PBMCs) than clinically normal horses. Leukocytes from naturally infected EPM horses had a significantly lower proliferation response, as measured by thymidine incorporation, to a non-antigen specific mitogen phorbol 12-myristate 13-acetate (PMA) / ionomycin (I) than did clinically normal horses (p=0.04). The implications of these findings will be discussed. In experiment 2, 13 horses were randomly divided into two groups. Baseline neurologic examinations were performed and all horses were confirmed negative for S. neurona antibodies in the CSF and serum. Then, one group with 8 clinically normal seronegative horses was inoculated intravenously with approximately 6000 S. neurona infected autologous leukocytes daily for 14 days. All the challenged horses showed neurologic signs consistent with EPM. PBMCs were isolated from the control and infected horses to determine how S. neurona alters the immune responses based on changes in immune cell subsets and immune function. There were no significant differences in the percentage of CD4 cells in peripheral blood lymphocytes or IFN-γ production by CD4 and/or CD8 cells. PMA/I stimulated proliferation responses in PBMCs appeared suppressed compared to that of uninfected controls. Additional studies are necessary to determine the role of CD4 and CD8 cells in disease and protection to S. neurona in horses, as well as to determine the mechanism associated with suppressed in vitro proliferation responses. This project was funded by Patricia Stuart Equine grants and paramutual racing funds from Virginia Tech.
- Plant-derived Murine IL-12 and Ricin B-Murine IL-12 FusionsLiu, Jianyun (Virginia Tech, 2006-12-06)Interleukin-12 (IL-12), an important immuno-modulator for cell-mediated immunity, shows significant potential as a vaccine adjuvant and anti-cancer therapeutic. However, its clinical application is limited by lack of an effective bioproduction system and by toxicity associated with systemic administration of IL-12. The goals of this research were to determine whether plants can serve as an effective production system for bioactive IL-12, a complex 70kDa glycoprotein cytokine, and whether the plant lectin RTB can facilitate mucosal delivery of IL-12 to immune responsive sites. Transgenic tobacco plants expressing murine IL-12 were generated and characterized. To ensure stochiometric expression of the two separately encoded, disulfide-linked subunits of IL-12 (p35 and p40), a single-chain form of mouse IL-12 (mIL-12) was utilized. Hairy root cultures, as a fast-growing bioproduction system were developed from high expressers of mIL-12. A purification scheme was developed to purify plant-derived mIL-12 from hairy roots and purified mIL-12 was used to assess IL-12 bioactivity in vitro in mouse splenocytes and in vivo in mouse intranasal vaccination trials. Plant-derived mIL-12 triggered induction of interferon-gamma secretion from mouse splenocytes as well as stimulation of cell proliferation with comparable activities to those observed for the animal-cell-derived mIL-12. Mouse vaccination trials using GFP as the antigen and CT as the adjuvant suggested that plant-derived mIL-12 enhanced Th1 immunity and exhibited similar activity to animal-cell-derived mIL-12 in vivo. Plant-derived IL-12 itself was non-immunogenic suggesting conformational equivalency to endogenous mouse IL-12. Ricin B (RTB), the non-toxic carbohydrate-binding subunit of ricin, directs uptake of ricin into mammalian cells and the intracellular trafficking of ricin A, the catalytic subunit of ricin. RTB's function suggests that it may work as a molecular carrier for effective mucosal delivery of IL-12. To prove this hypothesis, transgenic plants producing RTB:IL-12 fusions were generated and characterized. Our results demonstrated that RTB fused to the carboxyl-terminus of IL-12 maintained full lectin activity and IL-12 bioactivity. RTB fused to the amino-terminus of IL-12 did not show lectin activity due to steric hinderance. Purified IL-12:RTB from transgenic plant tissue was tested in an in vitro mucosal-associated lymphoid tissue (MALT) assay. The results indicate that RTB facilitates the binding of IL-12 to the epithelial cells and presentation of IL-12 to immune responsive cells. In conclusion, my research has shown that transgenic plants are capable of producing valuable bioactive proteins, such as IL-12. Plant-derived mIL-12 exhibited similar activity to animal-cell-derived mIL-12 both in vitro and in vivo. Fusion of IL-12 with the RTB lectin facilitates the delivery of IL-12 to mucosal immune responsive cells and thus may serve as a molecular carrier to enhance IL-12 efficacy and reduce the side-effects associated with systemic administration of IL-12.