Browsing by Author "Goldsmith, Charles Douglas"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Biodegradation of methanol and tertiary butyl alcohol in previously uncontaminated subsurface systemsGoldsmith, Charles Douglas (Virginia Polytechnic Institute and State University, 1985)The objective of this study was to determine the potential for biodegradation in subsurface soils and groundwater from sites in Williamsport, PA, Wayland, NY, and Dumfries, VA. These subsurface systems were characterized both physically, chemically and biologically. Bacterial populations were substantial in all systems and ranged from 10³ to 10⁸ colony forming units per gram. Soil sampling was done in a quality-controlled aseptic manner using conventional drilling end sampling equipment. A matrix of test-tube microcosms was used to determine biodegradation rates of methanol and t-butyl alcohol at concentrations ranging from 1 to 1000 mg/L. Methanol degraded readily at all sites ranging from 0.8 mg/L/day to 20.4 mg/L/day and rates were generally greater in the saturated zone. TBA biodegraded at all sites, but was refractory in nature. Biodegradation rates for TBA in anaerobic subsurface systems were found to increase directly with initial concentration from 10⁻⁴ mg/L/day for 1 mg/L to 10⁻¹ mg/L/day for 80 mg/L. TBA biodegradation in the aerobic system was essentially constant over all concentrations. Biokinetic coefficients were determined for methanol and TBA at each site based on plots of utilization rates versus substrate concentration and reciprocal plots of these values. The K values found suggest that aerobic subsurface systems can utilize alcohols at a greater rate than anoxic subsurface systems and can be used for comparative purposes. The Ks of anoxic subsurface systems were found to be large due to the low temperature (10°C) found in aquifers. The results indicate that methanol contamination in groundwater has much less associated risk to drinking water supplies due to the ease of biodegradation. However, TBA poses a much greater risk due to the very slow removal rates at low concentrations, which could result in a residual level for over a decade in some cases.
- Characterization and treatment of organic matter, UV quenching substances, and organic nitrogen in landfill leachatesDriskill, Natalie Marie (Virginia Tech, 2013-06-14)Landfill leachates are often treated on-site before disposal to municipal wastewater treatment plants, although variations in leachate composition and organic loading continue to have negative impacts on downstream treatment processes. Leachate samples were collected from four landfills both before and after on-site treatment to evaluate the extent of biological treatment. The samples vary in age, location, and on-site treatment processes. Size fractionation utilizing microfiltration (MF) and ultrafiltration (UF) was conducted in conjunction with TOC, nitrogen species, and UV254 absorbance analysis to determine the characteristics of organic constituents present in landfill leachate. The size fraction less than 1thousand Daltons (1 kDa) was responsible for a predominant portion of the organic fraction of the landfill leachates studied. Humic substances are refractory components present in landfill leachates that are resistant to biological treatment and responsible for a portion of the UV quenching ability of leachates. Humic substances were also fractionated to humic acid (HA), fulvic acid (FA), and hydrophilic (Hpi) components before being subjected to size fractionation to determine UV254 absorbance and organic fractions. Particle size and hydrophobic-hydrophilic fractionation were conducted in series to evaluate the potential for membrane treatment after biological treatment as a cost effective alternative to reverse osmosis processes currently used to decrease the organic fractions present in landfill leachate. The organic nitrogen fraction was predominately in the hydrophilic fraction smaller than 1 kDa.
- Characterization and treatment of UV quenching substances and organic nitrogen in landfill leachates and thermal hydrolysis/anaerobic digestion centrateGupta, Abhinav (Virginia Tech, 2013-05-14)Landfill leachates and thermal hydrolysis pretreated anaerobic digestion centrate can quench UV light at publicly owned treatment works (POTWs). Increased eutrophication, has led to tightening of nutrient discharge limits in some regions of the country. Biologically recalcitrant organic nitrogen, adds to effluent nitrogen making it difficult to meet these requirements. The study aimed at characterizing landfill leachate and centrate fractions to develop an understanding that might help design on-site treatment methods. Leachates varying in on-site treatment and ages were fractionated on basis of hydrophobic nature. Humic substances were the major UV light quenching fractions. Majority of the humic substances were > 1 kDa molecular weight cut off (MWCO) indicating that membrane treatment might be effective for UV quenching substances removal. UV absorbing substances were found to be more bio-refractory than organic carbon. Significant decrease in humic substances with long term landfilling indicated that age was important in determining the potential for leachates to impact the UV disinfection. Organic nitrogen was observed to be hydrophilic in nature (mostly < 1 kDa). Proteins which are easily biodegradable contributed around one-third of the organic nitrogen. For thermal hydrolysis centrate, the optimum treatment depended on particle size and hydrophobic nature. Biological treatment was observed to be more effective for the removal of organic matter and UV254 quenching substances for fractions < 300 kDa. Biological treatment had little impact on organic nitrogen. Coagulation-flocculation is an effective treatment for higher molecular weight (MW) fractions whereas a membrane bioreactor would be more suitable for smaller MW fractions.
- Effect of Long-Chain Fatty Acids on Anaerobic DigestionQian, Cheng (Virginia Tech, 2013-09-12)An investigation was carried out to study whether long-chain fatty acids (LCFAs) have an effect on digestion of waste sludge under anaerobic conditions. Four different kinds of LCFAs were used in this study. The 18 carbon series with 0, 1, 2 and 3 double bonds were studied to evaluate the degree of saturation on fatty acid degradation. Due to their molecular structure, unsaturated LCFAs are more soluble than saturated LCFAs. Oleic, linoleic, linolenic acid with an ascending number of double bonds were tested as representatives for three different degrees of saturation. In addition, stearic acid, a saturated fatty acid was also tested. LCFAs were added to sewage sludge at concentrations ranging from 5% to 20% on a weight basis and the pH, solids reduction and COD reduction were determined. The results suggested that in addition to degrading in the digesters, all unsaturated acids contributed additional solids removal, compared to the control group. In contrast, stearic acid did not affect the solids removal. The COD reduction was similar to solids reduction in that additional COD was destroyed when unsaturated LCFAs were added to the sludge. The mechanism for additional solids reduction is not known.
- Impact of operating conditions on thermal hydrolysis pre-treated digestion return liquorAhuja, Nandita (Virginia Tech, 2015-09-23)Return liquor from thermal hydrolysis process (THP) can significantly add to the nitrogen load of a wastewater treatment plant (WWTP) and introduce UV quenching substances to the wastewater stream when recycled. While there are mature technologies in place to handle the inorganic nitrogen produced due to the thermal pretreatment, organic nitrogen remains a parameter of concern for utilities employing THP pretreatment. The impact of operating conditions of the THP on dissolved organic nitrogen (DON) and UV absorbance in return liquor was investigated. Operating conditions studied were (1) operating temperature (2) solids retention time (SRT) in the anaerobic digester (3) THP flash pressure (4) the effect of co-digestion of sewage sludge with food waste and, (5) polymer conditioning. Operating temperature and polymer dose had the most significant impact on DON and UV quenching. It was found that an increase in operating temperature resulted in an increase in DON, which was primarily contributed by the hydrophilic fraction. An increase in temperature also resulted in increased UV254 absorbance. However, this trend was not linear and the increase was more pronounced when the temperature was increased from 150 C to 170 C. Increasing flash pressure from 25 psi to 45 psi did not have a significant impact on the return liquor. However, increasing the flash pressure to 75 psi increased the DON and UV254 absorbing compounds. Co-digesting the sludge with food waste resulted in a slight increase in DON and a decrease in dissolved organic carbon (DOC) and UV quenching compounds. Increasing the SRT from 10 days to 15 days resulted in a slight decrease in DON but did not have any impact on UV254 absorbance. Overall, it can be concluded that optimizing operating conditions of thermal hydrolysis process can result in decreased DON and UV quenching compounds in the recycle stream.
- Treatment of Landfill leachates using anion exchange resinsPathak, Sudhir Kumar (Virginia Tech, 2013-06-12)Landfill leachates are often discharged to wastewater treatment plants (WWTPs) but their highly varied composition makes their treatment in WWTPs difficult. Landfill leachates contain bio-refractory organic matter which easily passes the biological treatment processes at WWTPs and increases the organic matter in the effluent. Leachates also interfere with the UV disinfection process at treatment plants. Another concern is the presence of large amounts of bio-refractory organic nitrogen in the leachates which makes it difficult for WWTPs to meet the tightening total nitrogen requirements. Studies were conducted to evaluate the applicability of anion exchange resins to remove organic matter, UV quenching substance and organic nitrogen from landfill leachates. Leachate samples based on varying age and treatment methods were utilized. The anion exchange resins were found to work effectively for all studied leachates. The resins were found to remove more bio-refractory UV absorbing substances as compared to total organic carbon (TOC), suggesting that anion exchange resins could be employed for removal of UV absorbing substances. Multiple regenerations of the resin showed slight loss in the capacity to remove UV and organic carbon. Fractionation of leachate samples showed effective removal of humic acid (HA) fraction which is responsible for most of UV quenching. The resin was also found to effectively remove the bio-refractory hydrophilic (Hpi) fraction which tends to persist even after HA fraction has bio-degraded. Membrane filtration (1000 Da and 3000 Da Molecular weight cut off) in conjunction with ion exchange resins achieved better removal of organic matter and UV254 absorbing substances. In addition, this also significantly improved the performance of resins. Significant removal of organic nitrogen was also observed using anion exchange though it was less than both UV and TOC. Around 80% removal of organic nitrogen associated with bio-refractory Hpi fraction was achieved using anion exchange suggesting ion exchange as a viable alternative for removing organic nitrogen.
- Two - Stage AnMBR for Removal of UV Quenching Organic Carbon from Landfill Leachates: Feasibility and Microbial Community AnalysesPathak, Ankit Bidhan (Virginia Tech, 2017-02-13)Landfilling is the most widely used method for the disposal of municipal solid wastes (MSW) in the United States due to its simplicity and low cost. According to the 2014 report on Advancing Sustainable Materials Management by the USEPA, only 34% of the total MSW generated in the US was recycled, while 13% was combusted for energy recovery. In 2014, 53% of the MSW generated, (i.e. 136 million tons) in the US was landfilled. The treatment of landfill leachates, generated by percolation of water through the landfill, primarily due to precipitation, has been found to be one of the major challenges associated with landfill operation and management. Currently, leachates from most landfills are discharged into wastewater treatment plants, where they get treated along with domestic sewage. Issues associated with treatment of landfill leachates due to their high nitrogen and heavy metal content have been widely studied. Recently, it has been observed that the organic carbon in landfill leachates, specifically humic and fulvic acids (together referred to as "humic substances") contain aromatic groups that can absorb large amounts of ultraviolet (UV) light, greatly reducing the UV transmissivity in wastewater plants using UV disinfection as the final treatment step. This interference with UV disinfection is observed even when landfill leachates constitute a very small fraction (of the order of 1%) of the total volumetric flow into wastewater treatment plants. Humic substances are present as dissolved organic matter (DOM) and typically show very low biodegradability. Removing these substances using chemical treatment or membrane processes is an expensive proposition. However, the concentrations of humic substances are found to be reduced in leachates from landfill cells that have aged for several years, suggesting that these substances may be degraded under the conditions of long-term landfilling. The primary objective of this research was to use a two-stage process employing thermophilic pretreatment followed by a mesophilic anaerobic membrane bioreactor (AnMBR) to mimic the conditions of long-term landfilling. The AnMBR was designed to keep biomass inside the reactor and accelerate degradation of biologically recalcitrant organic carbon such as humic substances. The treatment goal was to reduce UV absorbance in raw landfill leachates, potentially providing landfills with an innovative on-site biological treatment option prior to discharging leachates into wastewater treatment plants. The system was operated over 14 months, during which time over 50% of UV-quenching organic carbon and 45% of UV absorbance was consistently removed. To the best of our knowledge, these removal values are higher than any reported using biological treatment in the literature. Comparative studies were also performed to evaluate the performance of this system in treating young leachates versus aged leachates. Next-generation DNA sequencing and quantitative PCR (qPCR) were used to characterize the microbial community in raw landfill leachates and the bioreactors treating landfill leachate. Analysis of microbial community structure and function revealed the presence of known degraders of humic substances in raw as well as treated landfill leachates. The total number of organisms in the bioreactors were found to be higher than in raw leachate. Gene markers corresponding to pathogenic bacteria and a variety of antibiotic resistance genes (ARGs) were detected in raw landfill leachates and the also in the reactors treating leachate, which makes it necessary to compare these ARG levels with wastewater treatment in order to determine if leachates can act as sources of ARG addition into wastewater treatment plants. In addition, the high UV absorbance of leachates could hinder the removal of ARBs and ARGs by UV disinfection, allowing their release into surface water bodies and aiding their proliferation in natural and engineered systems.