Browsing by Author "Gourdie, Robert G."
Now showing 1 - 20 of 59
Results Per Page
Sort Options
- Aberrant hippocampal neurogenesis contributes to learning and memory deficits in a mouse model of repetitive mild traumatic brain injuryGreer, Kisha (Virginia Tech, 2019-10-02)Adult hippocampal neurogenesis, or the process of creating new neurons in the dentate gyrus (DG) of the hippocampus, underlies learning and memory capacity. This cognitive ability is essential for humans to operate in their everyday lives, but cognitive disruption can occur in response to traumatic insult such as brain injury. Previous findings in rodent models have characterized the effect of moderate traumatic brain injury (TBI) on neurogenesis and found learning and memory shortfalls correlated with limited neurogenic capacity. While there are no substantial changes after one mild TBI, research has yet to determine if neurogenesis contributes to the worsened cognitive outcomes of repetitive mild TBI. Here, we examined the effect of neurogenesis on cognitive decline following repetitive mild TBI by utilizing AraC to limit the neurogenic capacity of the DG. Utilizing a BrdU fate-labeling strategy, we found a significant increase in the number of immature neurons that correlate learning and memory impairment. These changes were attenuated in AraC-treated animals. We further identified endothelial cell (EC)-specific EphA4 receptor as a key mediator of aberrant neurogenesis. Taken together, we conclude that increased aberrant neurogenesis contributes to learning and memory deficits after repetitive mild TBI.
- The adhesion function of the sodium channel beta subunit (beta 1) contributes to cardiac action potential propagationVeeraraghavan, Rengasayee; Hoeker, Gregory S.; Alvarez-Laviada, Anita; Hoagland, Daniel T.; Wan, Xiaoping; King, D. Ryan; Sanchez-Alonso, Jose; Chen, Chunling; Jourdan, L. Jane; Isom, Lori L.; Deschenes, Isabelle; Smith, James W.; Gorelik, Julia; Poelzing, Steven; Gourdie, Robert G. (2018-08-14)Computational modeling indicates that cardiac conduction may involve ephaptic coupling - intercellular communication involving electrochemical signaling across narrow extracellular clefts between cardiomyocytes. We hypothesized that beta 1(SCN1B) - mediated adhesion scaffolds trans-activating Na(V)1.5 (SCN5A) channels within narrow (<30 nm) perinexal clefts adjacent to gap junctions (GJs), facilitating ephaptic coupling. Super-resolution imaging indicated preferential beta 1 localization at the perinexus, where it co-locates with Na(V)1.5. Smart patch clamp (SPC) indicated greater sodium current density (I-Na) at perinexi, relative to non-junctional sites. A novel, rationally designed peptide, beta adp1, potently and selectively inhibited beta 1-mediated adhesion, in electric cell-substrate impedance sensing studies. beta adp1 significantly widened perinexi in guinea pig ventricles, and selectively reduced perinexal I-Na, but not whole cell I-Na, in myocyte monolayers. In optical mapping studies, beta adp1 precipitated arrhythmogenic conduction slowing. In summary, beta 1-mediated adhesion at the perinexus facilitates action potential propagation between cardiomyocytes, and may represent a novel target for anti-arrhythmic therapies.
- Advancing Transcranial Focused Ultrasound for Noninvasive Neuromodulation of Human CortexMueller, Jerel Keith (Virginia Tech, 2015-09-09)Ultrasound waves are mechanical undulations above the threshold for human hearing, and have been used widely in both the human body and brain for diagnostic and therapeutic purposes. Ultrasound can be controlled using specially designed transducers into a focus of a few millimeters in diameter. Low intensity ultrasound, such as used in imaging applications, appears to be safe in adults. It is also known that ultrasound waves can penetrate through the skull and be focused within the brain for ablation purposes, employing the heat generation properties of high intensity focused ultrasound. High intensity focused ultrasound is thus used to irreversibly ablate brain tissue in localized areas without observable damage to intermediate tissue and vasculature. Ablation with high intensity focused ultrasound guided by magnetic resonance imaging is used for abolishing brain tumors, and experimentally for pain. Low intensity ultrasound can be utilized beyond imaging in neuroscience and neurology by focusing the ultrasound beam to investigate the structure and function of discrete brain circuits. In contrast to high intensity focused ultrasound, the effects of low intensity focused ultrasound on neurons are reversible. Considering the volume of work on high intensity focused ultrasound, low intensity focused ultrasound remains decidedly underdeveloped. Given the great potential for impact of low intensity focused ultrasound in both clinical and scientific neuromodulation applications, we sought to advance the use of low intensity focused ultrasound for noninvasive, transcranial neuromodulation of human cortex. This dissertation contains novel research on the use of low intensity transcranial focused ultrasound for noninvasive neuromodulation of human cortex. The importance of mechanical forces in the nervous system is highlighted throughout to expand beyond the stigma that nervous function is governed chiefly by electrical and chemical means. Methods of transcranial focused ultrasound are applied to significantly modulate human cortical function, shown using electroencephalographic recordings and behavioral investigations of sensory discrimination performance. This dissertation also describes computational models used to investigate the insertion behavior of ultrasound across various tissues in the context of transcranial neuromodulation, as ultrasound's application for neuromodulation is relatively new and crudely understood. These investigations are critical for the refinement of device design and the overall advancement of ultrasound methods for noninvasive neuromodulation.
- Alternative mechanisms of translation initiation in modulation of gap junctional couplingJames, Carissa Chey (Virginia Tech, 2019-04-22)Gap junctions, comprised of connexin proteins, are essential for direct intercellular electrical, metabolic, and immunological coupling. Connexin43 (Cx43, gene name GJA1) is the most ubiquitously expressed gap junction protein, and Cx43 gap junctions are altered in pathological states including cardiac disease and cancer. The GJA1 mRNA undergoes alternative translation initiation to yield a truncated Cx43 isoform, GJA1-20k, that can regulate gap junction formation. Using epithelial-mesenchymal transition (EMT) as a cellular model of gap junction remodeling, we have demonstrated altered translation initiation of Gja1 as a mechanism by which cellular Cx43 gap junctions can be dynamically regulated. Suppression of Gja1 alternative translation is necessary for Cx43 gap junction loss, and stable expression of GJA1-20k rescues gap junction formation during EMT. To identify regulatory factors acting on the Gja1 mRNA, an MS2 RNA aptamer tagging system was adapted to isolate Gja1 with associated RNA binding proteins. We find the RNA binding protein IMP1 is sensitive to hypoxic stress and complexes with Gja1 mRNA, where it is necessary for alternative translation to generate GJA1-20k. We have demonstrated alterations in translation initiation of the Gja1 mRNA as a critical mechanism by which cells modulate Cx43 gap junctional coupling in changing conditions and identified a novel regulator of this process in mammalian cells.
- Building a Better Scar: Re-engineering Extracellular Matrix Structure in Dermal ScarsMontgomery, Jade (Virginia Tech, 2020-01-27)Introduction Cutaneous scars represent a common surgical complication, yet no effective drug therapy for scar treatment currently exists despite huge patient and physician demand. A connexin 43 (Cx43) carboxyl terminus (CT) mimetic peptide, alpha Connexin Carboxy-Terminus 1 (αCT1), has demonstrated efficacy in improving long-term scar appearance in pre-clinical and clinical trials. However, current understanding of the mechanism-of-action by which αCT1 improves long-term scar appearance with early intervention treatment is not well understood. Methods In vivo: Scar biopsies from 1) human, 2) Sprague-Dawley rat, and 3) IAF Hairless guinea pig trials of αCT1 were examined for collagen matrix structure at 4 weeks (all models), and 2 and 6 weeks (rat and guinea pig models only). Collagen matrix variables examined included local disorganization of the fibers, a variable that is higher in unwounded skin compared to scar tissue, and density of the fibers, which is higher in scar tissue but can also be used as an early temporal marker of the rate of healing. In vitro: Primary murine dermal fibroblasts were isolated from the whole dermis of 3-4 week old transgenic mice expressing collagen 1(α2) GFP-tpz. Cells were sorted for expression via FACS and plated on prealigned collagen substrate for 7 days under conditions favorable to generating extracellular matrix. Results: All in vivo scar biopsies demonstrated some level of altered collagen matrix structure with αCT1 treatment. Treated scars had higher local disorganization of the collagen fibers within the wound, and an increase in collagen matrix density compared to control at certain earlier timepoints that tended to decrease or disappear at later timepoints. The IAF Hairless guinea pig, a novel splinted wound healing model presented herein, was found to closely replicate the human dermal collagen profile and changes in collagen profile spurred by αCT1, significantly outperforming the traditional rat model. Primary dermal murine fibroblasts treated in vitro with αCT1 significantly increased synthesis of procollagen 1, the precursor of collagen 1 necessary for constructing the extracellular matrix, suggesting that at least part of the reason for higher collagen density at early in vivo timepoints is due to increased collagen synthesis by fibroblasts. Conclusion: αCT1 treatment in the early stages of wound healing prompts individual fibroblasts to increase their output of collagen and create a more disorganized early collagen matrix. These early changes potentially spur the long-term scar appearance improvements seen in clinical trials, and provide a basis for future work to discover the cellular pathways to alter in order to improve wound healing and cutaneous scarring outcomes.
- The connexin 43 carboxyl terminal mimetic peptide αCT1 prompts differentiation of a collagen scar matrix in humans resembling unwounded skinMontgomery, Jade; Richardson, William J.; Marsh, Spencer; Rhett, J. Matthew; Bustos, Francis; Degen, Katherine; Ghatnekar, Gautam S.; Grek, Christina L.; Jourdan, L. Jane; Holmes, Jeffrey W.; Gourdie, Robert G. (Wiley, 2021-07-10)Phase II clinical trials have reported that acute treatment of surgical skin wounds with the therapeutic peptide alpha Connexin Carboxy-Terminus 1 (αCT1) improves cutaneous scar appearance by 47% 9-month postsurgery. While Cx43 and ZO-1 have been identified as molecular targets of αCT1, the mode-of-action of the peptide in scar mitigation at cellular and tissue levels remains to be further characterized. Scar histoarchitecture in αCT1 and vehicle-control treated skin wounds within the same patient were compared using biopsies from a Phase I clinical trial at 29-day postwounding. The sole effect on scar structure of a range of epidermal and dermal variables examined was that αCT1-treated scars had less alignment of collagen fibers relative to control wounds—a characteristic that resembles unwounded skin. The with-in subject effect of αCT1 on scar collagen order observed in Phase I testing in humans was recapitulated in Sprague–Dawley rats and the IAF hairless guinea pig. Transient increase in histologic collagen density in response to αCT1 was also observed in both animal models. Mouse NIH 3T3 fibroblasts and primary human dermal fibroblasts treated with αCT1 in vitro showed more rapid closure in scratch wound assays, with individual cells showing decreased directionality in movement. An agent-based computational model parameterized with fibroblast motility data predicted collagen alignments in simulated scars consistent with that observed experimentally in human and the animal models. In conclusion, αCT1 prompts decreased directionality of fibroblast movement and the generation of a 3D collagen matrix postwounding that is similar to unwounded skin—changes that correlate with long-term improvement in scar appearance.
- Connexin 43 confers chemoresistance through activating PI3KPridham, Kevin J.; Shah, Farah; Hutchings, Kasen R.; Sheng, Kevin L.; Guo, Sujuan; Liu, Min; Kanabur, Pratik; Lamouille, Samy Y.; Lewis, Gabrielle; Morales, Marc; Jourdan, L. Jane; Grek, Christina L.; Ghatnekar, Gautam S.; Varghese, Robin T.; Kelly, Deborah F.; Gourdie, Robert G.; Sheng, Zhi (Springer Nature, 2022-01-12)Circumventing chemoresistance is crucial for effectively treating cancer including glioblastoma, a lethal brain cancer. The gap junction protein connexin 43 (Cx43) renders glioblastoma resistant to chemotherapy; however, targeting Cx43 is difficult because mechanisms underlying Cx43-mediated chemoresistance remain elusive. Here we report that Cx43, but not other connexins, is highly expressed in a subpopulation of glioblastoma and Cx43 mRNA levels strongly correlate with poor prognosis and chemoresistance in this population, making Cx43 the prime therapeutic target among all connexins. Depleting Cx43 or treating cells with αCT1–a Cx43 peptide inhibitor that sensitizes glioblastoma to the chemotherapy temozolomide–inactivates phosphatidylinositol-3 kinase (PI3K), whereas overexpression of Cx43 activates this signaling. Moreover, αCT1-induced chemo-sensitization is counteracted by a PI3K active mutant. Further research reveals that αCT1 inactivates PI3K without blocking the release of PI3K-activating molecules from membrane channels and that Cx43 selectively binds to the PI3K catalytic subunit β (PIK3CB, also called PI3Kβ or p110β), suggesting that Cx43 activates PIK3CB/p110β independent of its channel functions. To explore the therapeutic potential of simultaneously targeting Cx43 and PIK3CB/p110β, αCT1 is combined with TGX-221 or GSK2636771, two PIK3CB/p110β-selective inhibitors. These two different treatments synergistically inactivate PI3K and sensitize glioblastoma cells to temozolomide in vitro and in vivo. Our study has revealed novel mechanistic insights into Cx43/PI3K-mediated temozolomide resistance in glioblastoma and demonstrated that targeting Cx43 and PIK3CB/p110β together is an effective therapeutic approach for overcoming chemoresistance.
- Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1.Rhett, J. Matthew; Jourdan, L. Jane; Gourdie, Robert G. (2011-05)Connexin 43 (Cx43) is a gap junction (GJ) protein widely expressed in mammalian tissues that mediates cell-to-cell coupling. Intercellular channels comprising GJ aggregates form from docking of paired connexons, with one each contributed by apposing cells. Zonula occludens-1 (ZO-1) binds the carboxy terminus of Cx43, and we have previously shown that inhibition of the Cx43/ZO-1 interaction increases GJ size by 48 h. Here we demonstrated that increases in GJ aggregation occur within 2 h (∼Cx43 half-life) following disruption of Cx43/ZO-1. Immunoprecipitation and Duolink protein-protein interaction assays indicated that inhibition targets ZO-1 binding with Cx43 in GJs as well as connexons in an adjacent domain that we term the "perinexus." Consistent with GJ size increases being matched by decreases in connexons, inhibition of Cx43/ZO-1 reduced the extent of perinexal interaction, increased the proportion of connexons docked in GJs relative to undocked connexons in the plasma membrane, and increased GJ intercellular communication while concomitantly decreasing hemichannel-mediated membrane permeance in contacting, but not noncontacting, cells. ZO-1 small interfering RNA and overexpression experiments verified that loss and gain of ZO-1 function govern the transition of connexons into GJs. It is concluded that ZO-1 regulates the rate of undocked connexon aggregation into GJs, enabling dynamic partitioning of Cx43 channel function between junctional and proximal nonjunctional domains of plasma membrane.
- Connexin 43 expression is associated with increased malignancy in prostate cancer cell lines and functions to promote migration.Zhang, Ao; Hitomi, Masahiro; Bar-Shain, Noah; Dalimov, Zafardjan; Ellis, Leigh; Velpula, Kiran K.; Fraizer, Gail C.; Gourdie, Robert G.; Lathia, Justin D. (2015-05-10)Impaired expression of connexins, the gap junction subunits that facilitate direct cell-cell communication, have been implicated in prostate cancer growth. To elucidate the crucial role of connexins in prostate cancer progression, we performed a systematic quantitative RT-PCR screening of connexin expression in four representative prostate cancer cell lines across the spectrum of malignancy. Transcripts of several connexin subunits were detected in all four cell lines, and connexin 43 (Cx43) showed marked elevation at both RNA and protein levels in cells with increased metastatic potential. Analysis of gap-junction-mediated intercellular communication revealed homocellular coupling in PC-3 cells, which had the highest C x 43 expression, with minimal coupling in LNCaP cells where C x 43 expression was very low. Treatment with the gap junction inhibitor carbenoxolone or connexin mimetic peptide ACT-1 did not impair cell growth, suggesting that growth is independent of functional gap junctions. PC-3 cells with C x 43 expression reduced by shRNA showed decreased migration in monolayer wound healing assay, as well as decreased transwell invasion capacities when compared to control cells expressing non-targeting shRNA. These results, together with the correlation between C x 43 expression levels and the metastatic capacity of the cell lines, suggest a role of C x 43 in prostate cancer invasion and metastasis.
- Connexin 43-Based Therapeutics for Dermal Wound HealingMontgomery, Jade; Ghatnekar, Gautam S.; Grek, Christina L.; Moyer, Kurtis E.; Gourdie, Robert G. (MDPI, 2018-06-15)The most ubiquitous gap junction protein within the body, connexin 43 (Cx43), is a target of interest for modulating the dermal wound healing response. Observational studies found associations between Cx43 at the wound edge and poor healing response, and subsequent studies utilizing local knockdown of Cx43 found improvements in wound closure rate and final scar appearance. Further preclinical work conducted using Cx43-based peptide therapeutics, including alpha connexin carboxyl terminus 1 (αCT1), a peptide mimetic of the Cx43 carboxyl terminus, reported similar improvements in wound healing and scar formation. Clinical trials and further study into the mode of action have since been conducted on αCT1, and Phase III testing for treatment of diabetic foot ulcers is currently underway. Therapeutics targeting connexin activity show promise in beneficially modulating the human body’s natural healing response for improved patient outcomes across a variety of injuries.
- Cx43 and the Actin Cytoskeleton: Novel Roles and Implications for Cell-Cell Junction-Based Barrier Function RegulationStrauss, Randy E.; Gourdie, Robert G. (MDPI, 2020-12-10)Barrier function is a vital homeostatic mechanism employed by epithelial and endothelial tissue. Diseases across a wide range of tissue types involve dynamic changes in transcellular junctional complexes and the actin cytoskeleton in the regulation of substance exchange across tissue compartments. In this review, we focus on the contribution of the gap junction protein, Cx43, to the biophysical and biochemical regulation of barrier function. First, we introduce the structure and canonical channel-dependent functions of Cx43. Second, we define barrier function and examine the key molecular structures fundamental to its regulation. Third, we survey the literature on the channel-dependent roles of connexins in barrier function, with an emphasis on the role of Cx43 and the actin cytoskeleton. Lastly, we discuss findings on the channel-independent roles of Cx43 in its associations with the actin cytoskeleton and focal adhesion structures highlighted by PI3K signaling, in the potential modulation of cellular barriers. Mounting evidence of crosstalk between connexins, the cytoskeleton, focal adhesion complexes, and junctional structures has led to a growing appreciation of how barrier-modulating mechanisms may work together to effect solute and cellular flux across tissue boundaries. This new understanding could translate into improved therapeutic outcomes in the treatment of barrier-associated diseases.
- The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent MannerStrauss, Randy E. (Virginia Tech, 2022-01-20)The Cx43 CT mimetic peptide, αCT1, originally designed to bind to ZO1 and thereby inhibit Cx43/ZO1 interaction, was used as a tool to probe the role of Cx43/ZO1 association in regulation of epithelial/endothelial barrier function. Using both in vitro and ex vivo methods of barrier function measurement, including Electric Cell-Substrate Impedance Sensing(ECIS), a TRITC-dextran transwell permeability assay, and a FITC-dextran cardiovascular leakage protocol involving Langendorff-perfused mouse hearts, αCT1 was found to protect the endothelium from thrombin-induced breakdown in cell-cell contacts. Barrier protection was accompanied by significant remodeling of the F-actin cytoskeleton, characterized by a redistribution of F-actin away from the cytoplasmic and nuclear regions of the cell, towards the endothelial cell periphery, in association with alterations in cellular orientation distribution. In line with observations of increased cortical F-actin, αCT1 upregulated cell-cell border localization of endothelial VE-cadherin, the Tight Junction protein Zonula Occludens 1 (ZO1) , and the Gap Junction Protein (GJ) Connexin43 (Cx43). A ZO1-binding-incompetent variant of αCT1, αCT1-I, indicated that these effects on barrier function and barrier-associated proteins, were likely associated with Cx43 CT sequences retaining ability to interact with ZO1. These results implicate the Cx43 CT and its interaction with ZO1, in the regulation of endothelial barrier function, while revealing the therapeutic potential of αCT1 in the treatment of vascular edema.
- The Cx43 Carboxyl-Terminal Mimetic Peptide αCT1 Protects Endothelial Barrier Function in a ZO1 Binding-Competent MannerStrauss, Randy E.; Mezache, Louisa; Veeraraghavan, Rengasayee; Gourdie, Robert G. (MDPI, 2021-08-12)The Cx43 carboxyl-terminus (CT) mimetic peptide, αCT1, originally designed to bind to Zonula Occludens 1 (ZO1) and thereby inhibit Cx43/ZO1 interaction, was used as a tool to probe the role of Cx43/ZO1 association in regulation of epithelial/endothelial barrier function. Using both in vitro and ex vivo methods of barrier function measurement, including Electric Cell-Substrate Impedance Sensing (ECIS), a TRITC-dextran Transwell permeability assay, and a FITC-dextran cardiovascular leakage protocol involving Langendorff-perfused mouse hearts, αCT1 was found to protect the endothelium from thrombin-induced breakdown in cell–cell contacts. Barrier protection was accompanied by significant remodeling of the F-actin cytoskeleton, characterized by a redistribution of F-actin away from the cytoplasmic and nuclear regions of the cell, towards the endothelial cell periphery, in association with alterations in cellular chiral orientation distribution. In line with observations of increased cortical F-actin, αCT1 upregulated cell–cell border localization of endothelial VE-cadherin, the tight junction protein Zonula Occludens 1 (ZO1), and the Gap Junction Protein (GJ) Connexin43 (Cx43). A ZO1 binding-incompetent variant of αCT1, αCT1-I, indicated that these effects on barrier function and barrier-associated proteins, were likely associated with Cx43 CT sequences retaining ability to interact with ZO1. These results implicate the Cx43 CT and its interaction with ZO1, in the regulation of endothelial barrier function, while revealing the therapeutic potential of αCT1 in the treatment of vascular edema.
- Detection, Isolation and Quantification of Myocardial Infarct with Four Different Histological Staining TechniquesWu, Xiaobo; Meier, Linnea; Liu, Tom X.; Toldo, Stefano; Poelzing, Steven; Gourdie, Robert G. (MDPI, 2024-10-18)Background/Objectives: The precise quantification of myocardial infarction is crucial for evaluating therapeutic strategies. We developed a robust, color-based semi-automatic algorithm capable of infarct region detection, isolation and quantification with four different histological staining techniques, and of the isolation and quantification of diffuse fibrosis in the heart. Methods: Our method is developed based on the color difference in the infarct and non-infarct regions after histological staining. Mouse cardiac tissues stained with Masson’s trichrome (MTS), hematoxylin and eosin (H&E), 2,3,5-Triphenyltetrazolium chloride and picrosirius red were included to demonstrate the performance of our method. Results: We demonstrate that our algorithm can effectively identify and produce a clear visualization of infarct tissue in the four staining techniques. Notably, the infarct region on an H&E-stained tissue section can be clearly visualized after processing. The MATLAB-based program we developed holds promise for infarct quantification. Additionally, our program can isolate and quantify diffuse fibrotic elements from an MTS-stained cardiac section, which suggests the algorithm’s potential for evaluating pathological cardiac fibrosis in diseased cardiac tissues. Conclusions: We demonstrate that this color-based algorithm is capable of accurately identifying, isolating and quantifying cardiac infarct regions with different staining techniques, as well as diffuse and patchy fibrosis in MTS-stained cardiac tissues.
- Diabetes Increases Cryoinjury Size with Associated Effects on Cx43 Gap Junction Function and Phosphorylation in the Mouse Heart.Palatinus, Joseph A.; Gourdie, Robert G. (2016)Diabetic patients develop larger myocardial infarctions and have an increased risk of death following a heart attack. The poor response to myocardial injury in the diabetic heart is likely related to the many metabolic derangements from diabetes that create a poor substrate in general for wound healing, response to injury and infection. Studies in rodents have implicated a role for the gap junction protein connexin 43 (Cx43) in regulating the injury response in diabetic skin wounds. In this study, we sought to determine whether diabetes alters Cx43 molecular interactions or intracellular communication in the cryoinjured STZ type I diabetic mouse heart. We found that epicardial cryoinjury size is increased in diabetic mice and this increase is prevented by preinjury insulin administration. Consistent with these findings, we found that intercellular coupling via gap junctions is decreased after insulin administration in diabetic and nondiabetic mice. This decrease in coupling is associated with a concomitant increase in phosphorylation of Cx43 at serine 368, a residue known to decrease channel conductance. Taken together, our results suggest that insulin regulates both gap junction-mediated intercellular communication and injury propagation in the mouse heart.
- The Direct Impact of Trimethelamine-N-Oxide on Cardiac FunctionZheng, Youjing (Virginia Tech, 2023-02-15)Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The aging population and the rapidly increasing prevalence of obesity and type 2 diabetes will contribute to a growing epidemic of CVDs globally. Despite the extensive investigations in etiology, the pathogenesis of CVDs still not fully understand, and the treatment and prevention for CVDs are still limited. Significant interest has been raised in gut microbiota-host interaction since increasing evidence revealed that gut microbiomes play an important role in human health and diseases, including CVDs. Among more than two thousand gut microbiota metabolites, a compound named trimethylamine N-oxide (TMAO) was revealed to be closely related to CVDs. However, the impact of TMAO on cardiovascular health is still full of controversy and the direct impact of TMAO on heart tissue and cardiomyocytes has not been fully understood yet. In the first chapter, we reviewed the literature on TMAO-related atherosclerosis and cardiomyopathy to give us a general aspect of current research progress in the role of TMAO on CVDs. In this context, we provide an overview of the potential mechanisms underlying TMAO-induced cardiovascular diseases at the cellular and molecular levels, with a focus on atherosclerosis and cardiomyopathy. We also address the direct effects of TMAO on cardiomyocytes (a new and under-researched area) and finally propose TMAO as a potential biomarker and/or therapeutic target for the diagnosis and treatment of patients with CVDs. In the second chapter, the direct impact of TMAO on cardiac function was tested in vivo using wild-type C57B6L mice model. Four experiment groups were enrolled in the feeding protocol, which included 3w (different time points), 6w, and 13w feeding time to reveal the impact of short and longer periods of TMAO consumption on cardiac function. The plasma TMAO was measured by liquid chromatography-tandem mass spectrometry (LC/MS/MS) method at the end of the feeding protocol. Echocardiography and electrocardiography (ECG) were performed to assess the overall heart function. The histopathology staining was used to evaluate the cardiac microstructure change. By the end of the feeding protocol, the plasma TMAO all increased significantly in the TMAO group compared to the control no matter the TMAO feeding period. Echocardiography showed that 6w and 13w TMAO intake could significantly decrease cardiac contractility evidenced by decreased eject fraction (EF) and fraction shortening (FS). The electrocardiography (ECG) showed decreased R wave aptitude in 6w and 13w TMAO feed group with sinus rhythm. However, 3w TMAO intake had no impact on both cardiac contractability and ECG. Moreover, chronic TMAO supplement (13w) showed increased left ventricle (LV) mass on echocardiography and increased LV thickness on the tissue section. Further histology analysis revealed cardiomyocyte hypertrophy in the 13w TMAO-treated male group. Notably, the female mice showed significantly higher TMAO levels both in the control and treated group compared to the male, however, no gender difference was observed as to the ECG and echocardiography. In addition, the plasma inflammation cytokines were also analyzed and the tumor necrosis factor-α (TNF- α), interleukin 10 (IL-10), Fibroblast growth factor 2 (FGF β) and leptin were all increased in the 13w TMAO treated group compared to the control. These results suggest that chronic TMAO exposure led to increased plasma TMAO levels, which contribute to system inflammation and cardiac dysfunction due to cardiac hypertrophy in mice models. Research in chapter 3 demonstrates the potential underlying mechanisms of TMAO-induced cardiac dysfunction using adult mouse cardiomyocytes. In this study, we examined the direct effect of TMAO on reactive oxidative species (ROS) generation and factors related to cardiomyocyte contractibility, including, microtubule, Connexin43 (Cx43) expression, and gap junction intracellular communication (GJIC), intracellular calcium dynamics and transversal-tubule (T-tubule) both in acute and chronic TMAO challenge. Moreover, we also tested whether TMAO can enter cardiomyocytes directly. The results suggested that TMAO could enter cardiomyocytes through organic cation transporters (OCTs) and promote increased ROS generation via augmentation of NADPH oxidase 4 (Nox4). Moreover, both acute and chronic TMAO exposure could induce microtubule densification, which plays a critical role in intracellular protein transportation and cardiomyocyte morphology maintenance. We also demonstrated chronic TMAO exposure could inhibit the Cx43 expression at both cellular and tissue level, and therefore impact the GJIC for the first time. Besides, we also revealed that TMAO could interrupt intracellular calcium handling both acutely and chronically, especially documented by decreased efficiency in intracellular calcium removal, related to decreased sarcoplasmic reticulum Ca2+-ATPase (Serca2) expression. However, TMAO showed no impact on cardiomyocyte T-tubule network organization. Taken together, we demonstrated a direct destructive role of TMAO on cardiomyocytes' functional properties and provided a novel potential mechanism for TMAO-induced cardiac dysfunction. Overall, the research in this dissertation demonstrated the direct impact of TMAO on cardiomyocytes and cardiac function both in vivo and in vitro and evaluated the effect of TMAO both acutely and chronically. The TMAO can enter cardiomyocytes and induce Nox4-mediated oxidative stress, which could connect to multiple intracellular pathways, including microtubule densification, decreased Cx43 expression, and GJIC, as well as calcium handling dysfunction. Meanwhile, all these changes were closely related to the cardiomyocyte swelling observed in mice cardiac tissue after chronic TMAO consumption, which could ultimately contribute to cardiac contractile dysfunction and electrophysiology change in mice models.
- The effect of a connexin43-based Peptide on the healing of chronic venous leg ulcers: a multicenter, randomized trial.Ghatnekar, Gautam S.; Grek, Christina L.; Armstrong, David G.; Desai, Sanjay C.; Gourdie, Robert G. (2015-01)The gap junction protein, connexin43 (Cx43), has critical roles in the inflammatory, edematous, and fibrotic processes following dermal injury and during wound healing, and is abnormally upregulated at the epidermal wound margins of venous leg ulcers (VLUs). Targeting Cx43 with ACT1, a peptide mimetic of the carboxyl-terminus of Cx43, accelerates fibroblast migration and proliferation, and wound reepithelialization. In a prospective, multicenter clinical trial conducted in India, adults with chronic VLUs were randomized to treatment with an ACT1 gel formulation plus conventional standard-of-care (SOC) protocols, involving maintaining wound moisture and four-layer compression bandage therapy, or SOC protocols alone. The primary end point was mean percent ulcer reepithelialization from baseline to 12 weeks. A significantly greater reduction in mean percent ulcer area from baseline to 12 weeks was associated with the incorporation of ACT1 therapy (79% (SD 50.4)) as compared with compression bandage therapy alone (36% (SD 179.8); P=0.02). Evaluation of secondary efficacy end points indicated a reduced median time to 50 and 100% ulcer reepithelialization for ACT1-treated ulcers. Incorporation of ACT1 in SOC protocols may represent a well-tolerated, highly effective therapeutic strategy that expedites chronic venous ulcer healing by treating the underlying ulcer pathophysiology through Cx43-mediated pathways.
- Effects of Perfusate Composition (Na+ and Ca2+) on Cardiac Electrical and Mechanical Function in the Isolated Langendorff-Perfused HeartKing, David Ryan (Virginia Tech, 2021-02-11)Following the landmark studies on scientific reproducibility, or the lack thereof, by Bayer and Amgen in the past decade, there has been a renewed interest in scientific rigor and reproducibility in both the scientific and public media. In several recent reports, the high attrition rate observed in clinical trials has been attributed to irreproducibility at the preclinical level. Cardiology is no exception to this rule. In our systematic review of the ex vivo Langendorff-perfused heart, we found methods reporting to be sparse at best, specifically as it pertains to documenting the ex vivo perfusate compositions employed in the Langendorff heart. Our lab has demonstrated that variation in perfusate compositions can unmask disease states in genetically modified animals. In this dissertation, we exploit this concept with a therapeutic end-point in mind. We show that perfusate variation, specifically sodium and calcium elevations, can attenuate conduction slowing associated with severe hyperkalemia. Likewise, elevating sodium is capable of sustaining intrinsic rhythm where hearts would otherwise go asystolic. In doing so, elevated sodium prevents repolarization prolongation in these hearts. Together, these studies would suggest that elevating extracellular sodium, and calcium, should be considered as therapeutic targets in the context of conduction defects. However, when considering the heart's primary role as a pump, we found that elevating sodium actually depresses cardiac mechanical function. This is both in a pre- and post-ischemic setting. In short, we show that electrolyte variation may influence both cardiac electrophysiology and contraction; however, an improvement in one does not guarantee an improvement in both. Maintaining proper cardiac physiological function is a complex process that is tightly regulated by the ionic makeup of the extracellular environment. To improve insights from preclinical studies at the clinical level it is paramount that researchers properly document methods so that any significant results may be properly interpreted in clinical trial design.
- Effects of Perfusate Solution Composition on the Relationship between Cardiac Conduction Velocity and Gap Junction CouplingEntz, Michael William II (Virginia Tech, 2018-01-16)Reproducibility of results in biomedical research is an area of concern that should be paramount for all researchers. Importantly, this issue has been examined for experiments concerning cardiac electrophysiology. Specifically, multiple labs have found differences in results when comparing cardiac conduction velocity (CV) between healthy mice and mice that were heterozygous null for the gap junction (GJ) forming protein, Connexin 43. While the results of the comparison study showed differing extracellular ionic concentrations of the perfusates, specifically sodium, potassium, and calcium ([Na+]o, [K+]o, and [Ca2+]o), there was a lack of understanding why certain combinations of the aforementioned ions led to specific CV changes. However, more research from our lab indicates that these changes can predict modifications to a secondary form of cardiac coupling known as ephaptic coupling (EpC). Therefore the work in this dissertation was twofold, 1) to examine the effects of modulating EpC through perfusate ionic concentrations while also modulating GJC and 2) to investigate the effects of modulating all three of the main ions contributed with cardiac conduction (Na+, K+, Ca2+) and the interplay between them. Firstly I designed and tested changes from the use of 3D printed bath for optical mapping procedures. After verification that the bath did not modify electrophysiological or contrile parameters, I studied the effects of physiologic changes to EpC determinants ([Na+]o and [K+]o) on CV during various states of GJ inhibition using the non-specific GJ uncoupler carbenoxolone (CBX). Multiple pacing rates were used to further modify EpC, as an increased pacing rate leads to a decrease in sodium channel availability through modification of the resting membrane potential. with no to low (0 and 15 µM CBX) GJ inhibition, physiologic changes in [Na+]o and [K+]o did not affect CV, however increasing pacing rate decreased CV as expected. When CBX was increased to 30 µM, a combination of decreasing [Na+]o and increasing [K+]o significantly decreased cardiac CV, specifically when pacing rate was increased. Next, the combinatory effects of cations associated with EpC (Na+, K+, and Ca2+) were tested in to examine how cardiac CV reacts to changes in perfusate solution and how this may explain differences in experimental outcomes between laboratories. Briefly, experiments were run where [K+]o was varied throughout an experiment and the values for [Na+]o and [Ca2+]o were at one of two specific values during an experiment. 30 µM CBX was added to half of the experiments to see the changes in the CV-[K+]o relationship with GJ inhibition. With unaltered GJ coupling, elevated [Na+]o maintains CV during hyperkalemia. Interestingly, both [Na+]o and [Ca2+]o must be increased to maintain normal CV during hyperkalemia with reduced GJ coupling. These data suggest that optimized fluids can sustain normal conduction under pathophysiologic conditions like hyperkalemia and GJ uncoupling. Taken as a whole, this dissertation attempts to shed light on the importance of ionic concentration balance in perfusate solutions on cardiac conduction.
- Effects of Trimethylamine N-Oxide on Mouse Embryonic Stem Cell PropertiesBarron, Catherine Mary (Virginia Tech, 2020-08-06)Trimethylamine N-oxide (TMAO) is a metabolite derived from dietary choline, betaine, and carnitine via intestinal microbiota metabolism. In several recent studies, TMAO has been shown to directly induce inflammation and reactive oxygen species (ROS) generation in numerous cell types, resulting in cell dysfunction. However, whether TMAO will impact stem cell properties remains unknown. This project aims to explore the potential impact of TMAO on mouse embryonic stem cells (mESCs), which serve as an in vitro model of the early embryo and of other potent stem cell types. Briefly, mESCs were cultured in the absence (0mM) or presence of TMAO under two different sets of treatment conditions: long-term (21 days), low-dose (20µM, 200µM, and 1000µM) treatment or short-term (5 days), high-dose (5mM, 10mM, 15mM) treatment. Under these treatment conditions, mESC viability, proliferation, and stemness were analyzed. mESC properties were not negatively impacted under long-term, low-dose TMAO treatment; however, short-term, high-dose treatment resulted in significant reduction of mESC viability and proliferation. Additionally, mESC stemness was significantly reduced when high-dose treatment was extended to 21 days. To investigate an underlying cause for TMAO-induced loss in mESC stemness, metabolic activity of the mESCs under short-term, high-dose TMAO treatment was measured with a Seahorse XFe96 Analyzer. TMAO treatment significantly decreased the rate of glycolysis, and it increased the rate of compensatory glycolysis upon inhibition of oxidative phosphorylation (OxPHOS). It also significantly increased the rate of OxPHOS, maximal respiratory capacity, and respiratory reserve. These findings indicate that TMAO induced a metabolic switch of mESCs from high glycolytic activity to greater OxPHOS activity to promote mESC differentiation. Additionally, TMAO resulted in increased proton leak, indicating increased oxidative stress, and elucidating a potential underlying mechanism for TMAO-induced loss in mESC stemness. Altogether, these findings indicate that TMAO decreases stem cell potency potentially via modulation of metabolic activity.
- «
- 1 (current)
- 2
- 3
- »