Browsing by Author "Gray, Austin D."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Accumulation and depuration of microplastic fibers, fragments, and tire particles in the eastern oyster, Crassostrea virginica: A toxicokinetic approachWeinstein, John E.; Ertel, Bonnie M.; Gray, Austin D. (Elsevier, 2022-09-01)Along the South Carolina coast (U.S.) where the ecologically and economically important eastern oyster (Crassostrea virginica) forms extensive intertidal reefs, recent surface water surveys found that fibers, fragments, and microscopic tire particles represented 43.6%, 30.9%, and 17.7% of the total microplastics, respectively. The aim of this study was to characterize accumulation and depuration of these particles in eastern oysters. Oysters were exposed to purple polyethylene fibers, green nylon fragments, or micronized crumb rubber at a concentration of 5000 microplastics/L, and sacrificed after 0, 24, 48, and 96 h to characterize uptake. Following 96 h, remaining oysters were transferred to microplastic-free brackish water and sacrificed at 24, 48, and 96 h to characterize depuration. For fibers and fragments, levels increased in a nonlinear fashion reaching 1.61 ± 0.6 particles/g w. w. (mean ± SE) and 0.46 ± 0.1 particles/g w. w. after 96 h, respectively. Conditional uptake clearance rate constants (ku) were estimated to be 0.0084 and 0.0025 mL/g*h for fibers and fragments, respectively. For crumb rubber, levels increased in a linear fashion reaching 3.62 ± 0.8 particles/g w. w. after 96 h, and the ku value was estimated to be 0.0077 mL/g*h. Depuration was best described using a two-compartment (double exponential) model suggesting the presence of fast and slow compartments. Conditional depuration rate constants (kd) for the slow compartments were 0.0084, 0.0205, and 0.0048/h for fibers, fragments, and crumb rubber, respectively. These results demonstrate accumulation and depuration of microplastics in eastern oysters is size-and shape-dependent. Depuration, which is a common practice for shellfish safety, is an effective way to reduce microplastic loads in eastern oysters, but the minimum recommended time of 44 h would only reduce loads of these particles by 55.5–67.6%.
- Are Green Household Consumer Products Less Toxic than Conventional Products? An Assessment Involving Grass Shrimp (Palaemon pugio) and Daphnia magnaGray, Austin D.; Miller, Jonté A.; Weinstein, John E. (SETAC/Wiley, 2022-09-08)Although it is generally assumed that green household consumer products (HCPs) contain individual compounds that are less toxic and/or more degradable than conventional HCPs, little research on this topic has been conducted. In our assessments, larval grass shrimp (Palaemon pugio) were used in a biodegradation study and juvenile freshwater cladocerans, Daphnia magna, were used in a photodegradation study. In each study, organisms were exposed to nondegraded and degraded treatments consisting of one green HCP and two conventional HCPs in six different categories (laundry detergent, dish detergent, mouthwash, insecticide, dishwasher gel, and all-purpose cleaner). Sensitivity to these products were assessed using 48-h static acute toxicity tests, and the median lethal concentrations (LC50s) then compared using an LC50 ratio test. For grass shrimp, only one green HCP (insecticide) was less toxic than both conventional HCPs. In one category (laundry detergent), the green HCP was the more toxic than either conventional HCP. Following a biodegradation treatment, none of the green product formulations became less toxic, whereas 44.4% of the conventional HCPs demonstrated decreased toxicity. For daphnids, green HCPs in three categories (dish detergent, insecticide, and all-purpose cleaner) were less toxic than both conventional products tested. Following a photodegradation treatment, two green product formulations (dish detergent and dishwasher gel) became less toxic (33.3%), whereas 87.5% of the conventional HCPs demonstrated decreased toxicity. The present study demonstrates that green HCPs are not necessarily less toxic and/or more degradable than their conventional counterparts. These results also suggest that the toxicity and degradability of end-product formulations need to be considered in the overall framework for green product evaluation.
- Are nitrogen and carbon cycle processes impacted by common stream antibiotics? A comparative assessment of single vs. mixture exposuresGray, Austin D.; Bernhardt, Emily S. (PLoS, 2022-01-05)A variety of antibiotics are ubiquitous in all freshwater ecosystems that receive wastewater. A wide variety of antibiotics have been developed to kill problematic bacteria and fungi through targeted application, and their use has contributed significantly to public health and livestock management. Unfortunately, a substantial fraction of the antibiotics applied to humans, pets and livestock end up in wastewater, and ultimately many of these chemicals enter freshwater ecosystems. The effect of adding chemicals that are intentionally designed to kill microbes, on freshwater microbial communities remains poorly understood. There are reasons to be concerned, as microbes play an essential role in nutrient uptake, carbon fixation and denitrification in freshwater ecosystems. Chemicals that reduce or alter freshwater microbial communities might reduce their capacity to degrade the excess nutrients and organic matter that characterize wastewater. We performed a laboratory experiment in which we exposed microbial community from unexposed stream sediments to three commonly detected antibiotics found in urban wastewater and urban streams (sulfamethoxazole, danofloxacin, and erythromycin). We assessed how the form and concentration of inorganic nitrogen, microbial carbon, and nitrogen cycling processes changed in response to environmentally relevant doses (10 μg/L) of each of these antibiotics individually and in combination. We expected to find that all antibiotics suppressed rates of microbial mineralization and nitrogen transformations and we anticipated that this suppression of microbial activity would be greatest in the combined treatment. Contrary to our expectations we measured few significant changes in microbially mediated functions in response to our experimental antibiotic dosing. We found no difference in functional gene abundance of key nitrogen cycling genes nosZ, mcrA, nirK, and amoA genes, and we measured no treatment effects on NO3- uptake or N2O, N2, CH4, CO2 production over the course of our seven-day experiment. In the mixture treatment, we measured significant increases in NH4+ concentrations over the first 24 hours of the experiment, which were indistinguishable from controls within six hours. Our results suggest remarkable community resistance to pressure antibiotic exposure poses on naïve stream sediments.
- Assessment of acute toxicity and developmental transformation impacts of polyethylene microbead exposure on larval daggerblade grass shrimp (Palaemon pugio)Gray, Austin D.; Weinstein, John E.; Riegerix, Rachelle C. (Nature Portfolio, 2022-04-28)Due to the ubiquity of microplastic contamination in coastal waters, there is potential for adverse impacts to organism development. One organism of interest is the daggerblade grass shrimp, Palaemon pugio, an ecologically important species in estuaries along the east coast of North America. We exposed larval grass shrimp to virgin polyethylene microbeads (35 and 58 µm) at a high (0.375 and 1.95 mg/L), medium (0.0375 and 0.195 mg/L), and a low concentration (0.00375 and 0.0195 mg/L), respectively for 23 days to assess mortality, transformation time from larval to juvenile stage, and weight. Average percent mortality was 3.7 to 4.8 times higher in the experimental treatments compared to controls. The greatest proportion of mortality was observed in the first 11 days. Median time for transformation ranged from 20.2 to 20.8 days. Shrimp exposed to the 35 µm beads in the high treatment (20.2 days) transformed significantly faster than the control shrimp (20.8 days). Although development was not delayed and size of the shrimp did not differ, the acute toxicity of microplastics on grass shrimp is a concern due to their role in energy cycling within tidal-creeks. These findings suggest potential population and community level effects following microplastic exposure.
- First evidence of microplastic inhalation among free-ranging small cetaceansDziobak, Miranda K.; Fahlman, Andreas; Wells, Randall S.; Takeshita, Ryan; Smith, Cynthia; Gray, Austin D.; Weinstein, John; Hart, Leslie B. (Public Library of Science, 2024-10-16)Plastic is a ubiquitous environmental contaminant, resulting in widespread exposure across terrestrial and marine spaces. In the environment, plastics can degrade into microparticles where exposure has been documented in a variety of fauna at all trophic levels. Human epidemiological studies have found relationships between inhaled microplastics and oxidative stress and inflammation. Previous studies of bottlenose dolphins (Tursiops truncatus) have reported prevalent exposure to plasticizing chemicals (e.g., phthalates) as well as particle loads in gastrointestinal tracts, but exposure from inhalation has not yet been studied. The objective of this study was to determine if inhalation is a viable route of microplastic exposure for free-ranging dolphins. Exhalation samples were opportunistically collected from dolphins residing in Sarasota Bay, Florida (n = 5) and Barataria Bay, Louisiana (n = 6) during catch-and-release health assessments to screen for microplastic particles. All dolphin samples contained at least one suspected microplastic particle, and polymer composition was determined for 100% of a subset (n = 17) of samples. Additional studies are warranted to better understand the extent of inhaled microplastics, as well as to explore impacts, given potential risks to lung function and health.
- Influence of landscape-variation in geochemistry on taxonomic and functional composition of microbial mat communities in the McMurdo Dry Valleys, AntarcticaRisteca, Paul Joseph (Virginia Tech, 2023-06-08)Microbial communities play critical roles in biogeochemical cycles of aquatic and terrestrial ecosystems, but studies of soil microbial communities have been limited by the diversity and complexity found in most ecosystems. Here we report on work investigating the functional diversity of microbial mat and underlying soil communities in the McMurdo Dry Valleys of Antarctica across a gradient of phosphorus availability on glacial tills of distinct age and mineral composition in Taylor Valley, Antarctica. Microbial mat and soil DNA were extracted and sequenced on an Illumina NextSeq500 in a 150 bp paired end format. Raw sequences were uploaded to the MG-RAST server for processing and annotation. Community taxonomic and functional annotation were determined using the RefSeq and SEED Subsystem databases, respectively. The results revealed significant variation in microbial mat community taxonomic composition between the two tills, strongly associated with visual assessment of mat morphology, e.g., "black" and "orange" mats, and soil N:P ratios. The underlying soil microbial communities did not exhibit significant differences in diversity between the two tills, but community composition varied significantly across gradients of soil chemistry, particularly extractable-phosphate content even within tills. The relative abundance of biogeochemistry-relevant pathways determined from the SEED database varied amongst soil microbial communities between the two tills. For example, microbial mat communities exhibited significant variation in the relative abundance of key nitrogen and phosphorus metabolism associated genes strongly associated with the underlying soil N:P. These results suggest that spatial variation in geochemistry influences the distribution and activity of microbial mats, but that the microbial mats themselves also exert a significant homogenizing effect on the underlying soil communities and some of the key biogeochemical processes they facilitate.
- Mapping Stream Health Throughout Grayson County, Virginia by Testing Benthic MacoinvertebtaresBuchanan, Jonathan (Virginia Tech, 2022-12-24)Grayson County, Virginia is home to some of the largest Christmas tree productions in the United States. With this production comes the use of a multitude of pesticides, including the insecticide Sniper, Dimethoate, and Safari; the miticide Endivor and the herbicide Roundup. These pesticides have a varying effect on aquatic life, especially on benthic macroinvertebrates. This project focused on collecting benthic macroinvertebrate samples scattered throughout Grayson County and then analyzing the samples to determine what the stream health is at the current time of year. Overall, the stream health is good and has a lot of macroinvertebrates that are sensitive to pollution present. Future research on this project should include testing throughout different times of year (spring and summer) as well as testing upstream and downstream of Christmas tree farms, the following experiment was conducted upstream of Christmas tree farms.
- Rising seas and roadway debris: Microplastic and low-density tire wear particles in street-associated tidal floodwaterErtel, Bonnie M.; Weinstein, John E.; Gray, Austin D. (Pergamon-Elsevier, 2023-10)Tidal flooding is increasingly common in low-lying coastal regions as sea levels rise. This type of flooding can occur on sunny days with no rainfall and may transport street-associated debris, such as microplastics (MPs) including tire wear particles (TWPs), to coastal systems. This research aimed to quantify MP abundance in tidal floodwater and investigate their fate. Three locations around Charleston, SC (USA) were sampled during 12 tidal floods, and their adjacent tidal creeks were sampled before and after 5 floods. Floodwater contained an average of 342 ± 60 MP/L. Most MPs in floodwater were low-density TWP (86.5 %). MP abundance in tidal creek surface water following flooding did not change, suggesting that MPs were not immediately transferred to coastal waterways but deposited in adjacent marsh sediment. Elucidating transport routes of MPs in coastal environments is critical to understanding and preventing this type of contamination in the face of a changing climate.
- Using Water Quality as a Proxy to Estimate Microplastic Concentrations in the New River, VA, via Sentinel 2Rodriguez Sequeira, Luisana; Allen, George H.; Gray, Austin D. (New River Symposium, 2024-04-12)Microplastics (<5mm), are pervasive in Earth’s environments, and rivers are a major transport pathway. Microplastic detection methods that rely on counting individual particles are time consuming and require laborious field collection, inhibiting real-time insights over large spatial extents, which are needed in order to better understand the issue. Satellite remote sensing has been used to estimate water quality in rivers with relatively high spatial and temporal coverage. Finding a correlation between water quality and microplastics could allow us to estimate microplastics in rivers via satellite imagery using water quality as a proxy. Though a handful of these assessments have been done, a wide-variety of study sites are needed to form a coherent model. We focused our study in the New River near Blacksburg, VA, and collected weekly water quality measurements and surface-water microplastic samples. We combined these in situ measurements with cotemporal remotely-sensed water quality index observations from Sentinel-2 to develop a model estimating microplastic concentration. We validated the model using in-situ spectrometry and water quality measurements. By providing more observations than what can be done with in situ sampling alone, we can improve large-scale microplastic analyses and modeling leading to better assessments of mismanaged plastic waste in Earth’s rivers.