Browsing by Author "Greer, William Bryce"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Advanced Linear Model Predictive Control For Helicopter Shipboard ManeuversGreer, William Bryce (Virginia Tech, 2019-10-22)This dissertation focuses on implementing and analyzing advanced methods of model predictive control to control helicopters into stable flight near a ship and perform a soft touchdown from that state. A shrinking horizon model predictive control method is presented which can target specific states at specific times and take into account several important factors during landing. This controller is then used in simulation to perform a touchdown maneuver on a ship for a helicopter by targeting a landed state at a specific time. Increasing levels of fidelity are considered in the simulations. Computational power required reduces the closer the helicopter starts to the landing pad. An infinite horizon model predictive controller which allows simultaneous cost on state tracking, control energy, and control rates and allows tracking of an arbitrary equilibrium to infinity is then presented. It is applied in simulation to control a helicopter initially in a random flight condition far from a ship to slowly transition to stable flight near the ship, holding an arbitrary rough position relative to the ship indefinitely at the end. Three different target positions are simulated. This infinite horizon control method can be used to prepare for landing procedures that desire starting with the helicopter in some specific position in close proximity to the landing pad, such as the finite horizon method of landing control described previously which should start with the helicopter close to the ship to reduce computation power required. A method of constructing a landing envelope is then presented and used to construct a landing envelope for the finite horizon landing controller. A pre-existing method of combining linear controllers to account for nonlinearity is then slightly modified and used on implementations of the finite horizon landing controller to make a control that takes into account some of the nonlinearity of the problem. This control is tested in simulation.