Browsing by Author "Guo, Hui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Evolution of an Invasive Plant, Sorghum halepense L. ('Johnsongrass')Paterson, Andrew H.; Kong, Wenqian; Johnston, Robyn M.; Nabukalu, Pheonah; Wu, Guohong; Poehlman, William L.; Goff, Valorie H.; Isaacs, Krista; Lee, Tae-Ho; Guo, Hui; Zhang, Dong; Sezen, U. Uzay; Kennedy, Megan; Bauer, Diane; Feltus, Frank A.; Weltzien, Eva; Rattunde, Henry Frederick; Barney, Jacob; Barry, Kerrie; Cox, T. Stan; Scanlon, Michael J. (Frontiers, 2020-05-14)From noble beginnings as a prospective forage, polyploid Sorghum halepense (‘Johnsongrass’) is both an invasive species and one of the world’s worst agricultural weeds. Formed by S. bicolor x S. propinquum hybridization, we show S. halepense to have S. bicolor-enriched allele composition and striking mutations in 5,957 genes that differentiate it from representatives of its progenitor species and an outgroup. The spread of S. halepense may have been facilitated by introgression from closely-related cultivated sorghum near genetic loci affecting rhizome development, seed size, and levels of lutein, a photochemical protectant and abscisic acid precursor. Rhizomes, subterranean stems that store carbohydrates and spawn clonal propagules, have growth correlated with reproductive rather than other vegetative tissues, and increase survival of both temperate cold seasons and tropical dry seasons. Rhizomes of S. halepense are more extensive than those of its rhizomatous progenitor S. propinquum, with gene expression including many alleles from its non-rhizomatous S. bicolor progenitor. The first surviving polyploid in its lineage in ∼96 million years, its post-Columbian spread across six continents carried rich genetic diversity that in the United States has facilitated transition from agricultural to non-agricultural niches. Projected to spread another 200–600 km northward in the coming century, despite its drawbacks S. halepense may offer novel alleles and traits of value to improvement of sorghum.
- Increased efficacy of metformin corresponds to differential metabolic effects in the ovarian tumors from obese versus lean miceHan, Jianjun; Wysham, Weiya Z.; Zhong, Yan; Guo, Hui; Zhang, Lu; Malloy, Kim M.; Dickens, Hallum K.; Huh, Gene; Lee, Douglas; Makowski, Liza; Zhou, Chunxiao; Bae-Jump, Victoria L. (2017-12-19)Obesity is a significant risk factor for ovarian cancer (OC) and associated with worse outcomes for this disease. We assessed the anti-tumorigenic effects of metformin in human OC cell lines and a genetically engineered mouse model of high grade serous OC under obese and lean conditions. Metformin potently inhibited growth in a dose-dependent manner in all four human OC cell lines through AMPK/mTOR pathways. Treatment with metformin resulted in G1 arrest, induction of apoptosis, reduction of invasion and decreased hTERT expression. In the K18-gT(121)(+/-); p53(fl/fl); Brca1(fl/fl) (KpB) mouse model, metformin inhibited tumor growth in both lean and obese mice. However, in the obese mice, metformin decreased tumor growth by 60%, whereas tumor growth was only decreased by 32% in the lean mice (p=0.003) compared to vehicle-treated mice. The ovarian tumors from obese mice had evidence of impaired mitochondrial complex 2 function and energy supplied by omega fatty acid oxidation rather than glycolysis as compared to lean mice, as assessed by metabolomic profiling. The improved efficacy of metformin in obesity corresponded with inhibition of mitochondrial complex 1 and fatty acid oxidation, and stimulation of glycolysis in only the OCs of obese versus lean mice. In conclusion, metformin had anti-tumorigenic effects in OC cell lines and the KpB OC pre-clinical mouse model, with increased efficacy in obese versus lean mice. Detected metabolic changes may underlie why ovarian tumors in obese mice have heightened susceptibility to metformin.