Browsing by Author "Habibi, Mohammad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Latent heat of traffic moving from restAhmadi, S. Farzad; Berrier, Austin S.; Doty, William M.; Greer, Pat G.; Habibi, Mohammad; Morgan, Hunter A.; Waterman, Josam H.C.; Abaid, Nicole; Boreyko, Jonathan B. (IOP Publishing, 2017-11-22)Contrary to traditional thinking and driver intuition, here we show that there is no benefit to ground vehicles increasing their packing density at stoppages. By systematically controlling the packing density of vehicles queued at a traffic light on a Smart Road, drone footage revealed that the benefit of an initial increase in displacement for close-packed vehicles is completely offset by the lag time inherent to changing back into a ‘liquid phase’ when flowresumes. This lag is analogous to the thermodynamic concept of the latent heat of fusion, as the ‘temperature’ (kinetic energy) of the vehicles cannot increase until the traffic ‘melts’ into the liquid phase.These findings suggest that in situations where gridlock is not an issue, drivers should not decrease their spacing during stoppages in order to lessen the likelihood of collisions with no loss in flowefficiency. In contrast, motion capture experiments of a line of people walking from rest showed higher flow efficiency with increased packing densities, indicating that the importance of latent heat becomes trivial for slower moving systems.
- Oil-Impregnated Hydrocarbon-Based Polymer FilmsMukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad T.; Berbert, Otacilio; Shi, Xiangke; Boreyko, Jonathan B. (Springer Nature, 2018-08-03)Porous surfaces impregnated with a liquid lubricant exhibit minimal contact angle hysteresis with immiscible test liquids, rendering them ideal as self-cleaning materials. Rather than roughening a solid substrate, an increasingly popular choice is to use an absorbent polymer as the "porous" material. However, to date the polymer choices have been limited to expensive silicone-based polymers or complex assemblies of polymer multilayers on functionalized surfaces. In this paper, we show that hydrocarbon-based polymer films such as polyethylene can be stably impregnated with chemically compatible vegetable oils, without requiring any surface treatment. These oil-impregnated hydrocarbon-based films exhibit minimal contact angle hysteresis for a wide variety of test products including water, ketchup, and yogurt. Our oil-impregnated films remain slippery even after several weeks of being submerged in ketchup, illustrating their extreme durability. We expect that the simple and cost-effective nature of our slippery hydrocarbon-based films will make them useful for industrial packaging applications.