Browsing by Author "Habibian, Soheil"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Communication-Driven Robot Learning for Human-Robot CollaborationHabibian, Soheil (Virginia Tech, 2024-07-25)The growing presence of modern learning robots necessitates a fundamental shift in design, as these robots must learn skills from human inputs. Two main components close the loop in a human-robot interaction: learning and communication. Learning derives robot behaviors from human inputs, and communication conveys information about the robot's learning to the human. This dissertation focuses on methods that enable robots to communicate their internal state clearly while learning precisely from human inputs. We first consider the information implicitly communicated by robot behavior during human interactions and whether it can be utilized to form human-robot teams. We investigate behavioral economics to identify biases and expectations in human team dynamics and incorporate them into human-robot teams. We develop and demonstrate an optimization approach that relates high-level subtask allocations to low-level robot actions, which implicitly communicates learning to encourage human participation in robot teams. We then study how communication helps humans teach tasks to robots using active learning and interactive imitation learning algorithms. Within the active learning approach, we develop a model that forms a belief over the human's mental model about the robot's learning. We validate that our algorithm enables the robot to balance between learning human preferences and implicitly communicating its learning through questions. Within the imitation learning approach, we integrate a wrapped haptic display that explicitly communicates representations from the robot's learned behavior to the user. We show that our framework helps the human teacher improve different aspects of the robot's learning during kinesthetic teaching. We then extend this system to a more comprehensive interactive learning architecture that provides multi-modal feedback through augmented reality and haptic interfaces. We present a case study with this closed-loop system and illustrate improved teaching, trust, and co-adaptation as the measured benefits of communicating robot learning. Overall, this dissertation demonstrates that bi-directional communication helps robots learn faster and adapt better, while humans experience a more intuitive and trust-based interaction.
- Design and implementation of a maxi-sized mobile robot (Karo) for rescue missionsHabibian, Soheil; Dadvar, Mehdi; Peykari, Behzad; Salehzadeh, M. H.; Hosseini, Alireza H. M.; Najafi, Farshid (2021-01-07)Rescue robots are expected to carry out reconnaissance and dexterity operations in unknown environments comprising unstructured obstacles. Although a wide variety of designs and implementations have been presented within the field of rescue robotics, embedding all mobility, dexterity, and reconnaissance capabilities in a single robot remains a challenging problem. This paper explains the design and implementation of Karo, a mobile robot that exhibits a high degree of mobility at the side of maintaining required dexterity and exploration capabilities for urban search and rescue (USAR) missions. We first elicit the system requirements of a standard rescue robot from the frameworks of Rescue Robot League (RRL) of RoboCup and then, propose the conceptual design of Karo by drafting a locomotion and manipulation system. Considering that, this work presents comprehensive design processes along with detail mechanical design of the robot’s platform and its 7-DOF manipulator. Further, we present the design and implementation of the command and control system by discussing the robot’s power system, sensors, and hardware systems. In conjunction with this, we elucidate the way that Karo’s software system and human–robot interface are implemented and employed. Furthermore, we undertake extensive evaluations of Karo’s field performance to investigate whether the principal objective of this work has been satisfied. We demonstrate that Karo has effectively accomplished assigned standardized rescue operations by evaluating all aspects of its capabilities in both RRL’s test suites and training suites of a fire department. Finally, the comprehensiveness of Karo’s capabilities has been verified by drawing quantitative comparisons between Karo’s performance and other leading robots participating in RRL.
- Evaluation of two complementary modeling approaches for fiber-reinforced soft actuatorsHabibian, Soheil; Wheatley, Benjamin B.; Bae, Suehye; Shin, Joon; Buffinton, Keith W. (2022-05-21)Although robots are increasingly found in a wide range of applications, their use in proximity to humans is still fraught with challenges, primarily due to safety concerns. Roboticists have been seeking to address this situation in recent years through the use of soft robots. Unfortunately, identifying appropriate models for the complete analysis and investigation of soft robots for design and control purposes can be problematic. This paper seeks to address this challenge by proposing two complementary modeling techniques for a particular type of soft robotic actuator known as a Fiber-Reinforced Elastomeric Enclosure (FREE). We propose that researchers can leverage multiple models to fill gaps in the understanding of the behavior of soft robots. We present and evaluate both a dynamic, lumped-parameter model and a finite element model to extend understanding of the practicability of FREEs in soft robotic applications. The results of experimental simulations using a lumped-parameter model show that at low pressures FREE winding angle and radius change no more than 2%. This observation provided confidence that a linearized, dynamic, lumped-mass model could be successfully used for FREE controller development. Results with the lumped-parameter model demonstrate that it predicts the actual rotational motion of a FREE with at most 4% error when a closed-loop controller is embedded in the system. Additionally, finite element analysis was used to study FREE design parameters as well as the workspace achieved with a module comprised of multiple FREEs. Our finite element results indicate that variations in the material properties of the elastic enclosure of a FREE are more significant than variations in fiber properties (primarily because the fibers are essentially inextensible in comparison to the elastic enclosure). Our finite element analysis confirms the results obtained by previous researchers for the impact of variations in winding angle on FREE rotation, and we extend these results to include an analysis of the effect of winding angle on FREE force and moment generation. Finally, finite element results show that a 30∘ difference in winding angle dramatically alters the shape of the workspace generated by four FREEs assembled into a module. Concludingly, comments are made about the relative advantages and limitations of lumped-parameter and finite element models of FREEs and FREE modules in providing useful insights into their behavior.
- Here's What I've Learned: Asking Questions that Reveal Reward LearningHabibian, Soheil; Jonnavittula, Ananth; Losey, Dylan P. (ACM, 2022-09-08)Robots can learn from humans by asking questions. In these questions the robot demonstrates a few different behaviors and asks the human for their favorite. But how should robots choose which questions to ask? Today's robots optimize for informative questions that actively probe the human's preferences as efficiently as possible. But while informative questions make sense from the robot's perspective, human onlookers may find them arbitrary and misleading. In this paper we formalize active preference-based learning from the human's perspective. We hypothesize that --- from the human's point-of-view --- the robot's questions reveal what the robot has and has not learned. Our insight enables robots to use questions to make their learning process transparent to the human operator. We develop and test a model that robots can leverage to relate the questions they ask to the information these questions reveal. We then introduce a trade-off between informative and revealing questions that considers both human and robot perspectives: a robot that optimizes for this trade-off actively gathers information from the human while simultaneously keeping the human up to date with what it has learned. We evaluate our approach across simulations, online surveys, and in-person user studies.
- Here’s What I’ve Learned: Asking Questions that Reveal Reward LearningHabibian, Soheil; Jonnavittula, Ananth; Losey, Dylan P. (Virginia Tech, 2021-07-02)Robots can learn from humans by asking questions. In these questions the robot demonstrates a few different behaviors and asks the human for their favorite. But how should robots choose which questions to ask? Today’s robots optimize for informative questions that actively probe the human’s preferences as efficiently as possible. But while informative questions make sense from the robot’s perspective, human onlookers often find them arbitrary and misleading. For example, consider an assistive robot learning to put away the dishes. Based on your answers to previous questions this robot knows where it should stack each dish; however, the robot is unsure about right height to carry these dishes. A robot optimizing only for informative questions focuses purely on this height: it shows trajectories that carry the plates near or far from the table, regardless of whether or not they stack the dishes correctly. As a result, when we see this question, we mistakenly think that the robot is still confused about where to stack the dishes! In this paper we formalize active preference-based learning from the human’s perspective. We hypothesize that — from the human’s point-of-view — the robot’s questions reveal what the robot has and has not learned. Our insight enables robots to use questions to make their learning process transparent to the human operator.We develop and test a model that robots can leverage to relate the questions they ask to the information these questions reveal. We then introduce a trade-off between informative and revealing questions that considers both human and robot perspectives: a robot that optimizes for this trade-off actively gathers information from the human while simultaneously keeping the human up to date with what it has learned. We evaluate our approach across simulations, online surveys, and in-person user studies. We find that robots which consider the human’s point of view learn just as quickly as state-of-the-art baselines while also communicating what they have learned to the human operator. Videos of our user studies and results are available here: https://youtu.be/tC6y_jHN7Vw.