Browsing by Author "Hagens, Olivier"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Inferring and validating mechanistic models of neural microcircuits based on spike-train dataLadenbauer, Josef; McKenzie, Sam; English, Daniel Fine; Hagens, Olivier; Ostojic, Srdjan (Springer Nature, 2019-10-30)The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic models are useful to interpret microcircuit dynamics, but are rarely quantitatively matched to experimental data due to methodological challenges. Here we present analytical methods to efficiently fit spiking circuit models to single-trial spike trains. Using derived likelihood functions, we statistically infer the mean and variance of hidden inputs, neuronal adaptation properties and connectivity for coupled integrate-and-fire neurons. Comprehensive evaluations on synthetic data, validations using ground truth in-vitro and in-vivo recordings, and comparisons with existing techniques demonstrate that parameter estimation is very accurate and efficient, even for highly subsampled networks. Our methods bridge statistical, data-driven and theoretical, model-based neurosciences at the level of spiking circuits, for the purpose of a quantitative, mechanistic interpretation of recorded neuronal population activity.
- Inferring and validating mechanistic models of neural microcircuits based on spike-train dataLadenbauer, Josef; McKenzie, Sam; English, Daniel Fine; Hagens, Olivier; Ostojic, Srdjan (2018-02-07)The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow for principled parameter estimation and model selection but provide only limited insights into underlying microcircuits. In contrast, mechanistic models are useful to interpret microcircuit dynamics, but are rarely quantitatively matched to experimental data due to methodological challenges. Here we present analytical methods to efficiently fit spiking circuit models to single-trial spike trains. Using the maximal-likelihood approach, we statistically infer the mean and variance of hidden inputs, neuronal adaptation properties and connectivity for coupled integrate-and-fire neurons. Evaluations based on simulated data, and validations using ground truth recordings in vitro and in vivo demonstrated that parameter estimation is very accurate, even for highly sub-sampled networks. We finally apply our methods to recordings from cortical neurons of awake ferrets and reveal population-level equalization between hidden excitatory and inhibitory inputs. The methods introduced here enable a quantitative, mechanistic interpretation of recorded neuronal population activity.