Browsing by Author "Hallagan, John J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Exposure to residual concentrations of elements from a remediated coal fly ash spill does not adversely influence stress and immune responses of nestling tree swallowsBeck, Michelle L.; Hopkins, William A.; Hallagan, John J.; Jackson, Brian P.; Hawley, Dana M. (Oxford University Press, 2014)Anthropogenic activities often produce pollutants that can affect the physiology, growth and reproductive success of wildlife. Many metals and trace elements play important roles in physiological processes, and exposure to even moderately elevated concentrations of essential and non-essential elements could have subtle effects on physiology, particularly during development. We examined the effects of exposure to a number of elements from a coal fly ash spill that occurred in December 2008 and has since been remediated on the stress and immune responses of nestling tree swallows. We found that nestlings at the site of the spill had significantly greater blood concentrations of Cu, Hg, Se and Zn in 2011, but greater concentrations only of Se in 2012, in comparison to reference colonies. The concentrations of elements were below levels of significant toxicological concern in both years. In 2011, we found no relationship between exposure to elements associated with the spill and basal or stress-induced corticosterone concentrations in nestlings. In 2012, we found that Se exposure was not associated with cellmediated immunity based on the response to phytohaemagglutinin injection. However, the bactericidal capacity of nestling plasma had a positive but weak association with blood Se concentrations, and this association was stronger at the spill site. Our results indicate that exposure to these low concentrations of elements had few effects on nestling endocrine and immune physiology. The long-term health consequences of low-level exposure to elements and of exposure to greater element concentrations in avian species require additional study.
- Incubation Temperature Affects Duckling Body Size and Food Consumption Despite No Effect on Associated Feeding BehaviorsHope, Syndey F.; Kennamer, R. A.; Grimaudo, A. T.; Hallagan, John J.; Hopkins, William A. (Oxford University Press, 2020)Developmental conditions can have consequences for offspring fitness. For example, small changes (<1°C) in average avian incubation temperature have large effects on important post-hatch offspring phenotypes, including growth rate, thermoregulation, and behavior. Furthermore, average incubation temperatures differ among eggs within the same nest, to the extent (i.e., >1°C) that differences in offspring phenotypes within broods should result. A potential consequence of within-nest incubation temperature variation is inequality in behaviors that could cause differences in resource acquisition within broods. To investigate this, we incubated wood duck (Aix sponsa) eggs at one of two ecologically-relevant incubation temperatures (35°C or 36°C), formed mixed-incubation temperature broods after ducklings hatched, and conducted trials to measure duckling behaviors associated with acquisition of heat (one trial) or food (three trials). Contrary to our predictions, we found no effect of incubation temperature on duckling behaviors (e.g., time spent occupying heat source, frequency of feeding bouts). However, we found evidence that ducklings incubated at the higher temperature consumed more food during the 1-h feeding trials, and grew faster in body mass and structural size (culmen and tarsus) throughout the study, than those incubated at the lower temperature. Apparent food consumption during the trials was positively related to culmen length, suggesting that differences in food consumption may be driven by structural size. This could result in positive feedback, which would amplify size differences between offspring incubated at different temperatures. Thus, our study identifies incubation temperature as a mechanism by which fitness-related phenotypic differences can be generated and even amplified within avian broods.