Browsing by Author "Han, M."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Analysis Of A High-Speed Fiber-Optic Spectrometer For Fiber-Optic Sensor Signal ProcessingWang, Y. X.; Han, M.; Wang, Anbo (Optical Society of America, 2007)A novel high-speed fiber-optic spectrometer has been demonstrated in our previous work. The high-speed spectrum measurement is enabled by translating the spectral-domain signal into a time-domain signal through a dispersion element. We present a mathematical model that accurately describes the relationship between the optical spectrum to be measured and the dispersed time-domain signal. Based on the model, the effects of the key parameters on the performance of the spectrometer are investigated in detail using numerical simulation. The analysis is useful for the design and application of such spectrometers. (C) 2007 Optical Society of America.
- Exact Analysis Of Low-Finesse Multimode Fiber Extrinsic Fabry-Perot InterferometersHan, M.; Wang, Anbo (Optical Society of America, 2004-02-01)A straightforward theory is presented to accurately model the light inferences in a low-finesse multimode fiber extrinsic Fabry-Perot (FP) interferometer. The effect on the fringe visibility of the gap length, sensor structure imperfections, and modal power distributions is explored. The analysis is particularly useful in the design and optimization of sensors that use an extrinsic FP cavity as the sensing element. (C) 2004 Optical Society of America.
- Implementation Of A Loss-Compensated Recirculating Delayed Self-Heterodyne Interferometer For Ultranarrow Laser Linewidth MeasurementChen, X. P.; Han, M.; Zhu, Y. Z.; Dong, Bin; Wang, Anbo (Optical Society of America, 2006-12-01)Ultranarrow laser linewidth measurement using an optimized loss-compensated recirculating delayed self-heterodyne interferometer is described. An experimental setup is constructed to measure subkilohertz laser linewidths. The system parameters are optimized to obtain the best beat signals. The experimental results agree well with the theoretical analysis. Two methods of linewidth interpretation are presented and analyzed based on the experimental results. It is proved that a loss-compensated recirculating delayed self-heterodyne interferometer is an effective tool for measuring an ultranarrow laser linewidth. (c) 2006 Optical Society of America.