Browsing by Author "Hansen, Robyn Michelle"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Validation and Examination of Upper Extremity Kinematics in Typically Developing Children During the Box and Blocks Functional Test using Marker-based and Markerless TechnologyHansen, Robyn Michelle (Virginia Tech, 2023-06-30)Joint kinematics of upper extremity (UE) impairments in a pediatric population are often difficult to examine using marker-based motion capture. As a result of the cost and availability of tools such as marker-based motion capture in clinical settings, clinicians use functional tasks to examine improvement in movement quality. However, some of these tasks, such as the Box and Block test (BBT), which is examined in this study, rely on scoring to assess motor improvement. This scoring method can be misleading due to the possibility of movement compensation to improve scores. Therefore, finding kinematic correlations that can lead to improved BBT scores could improve the quality of functional assessments by providing discrete measures for clinicians. Understanding human motion using marker-based motion capture has been the accepted standard in biomechanics. However, it is not without its drawbacks, especially in upper extremity examination due to complex anatomical positioning. The introduction of markerless motion capture software could drastically alter how human biomechanics is analyzed in various settings. Additionally, avoiding possible errors due to clothing and skin movement could greatly improve reported results. Therefore, examining similarities in UE joint kinematics between accepted marker-based and markerless software could introduce markerless motion capture as a method for examining complex kinematics. This study aims to examine UE joint kinematics in a typically developing pediatric population while they complete the BBT, as well as validate Theia3D (Theia Markerless Inc., Kingston, ON, Canada). Marker-based motion capture was used to capture UE kinematics during the BBT. This study was performed on typically developing children aged 7, 9, and 11. Average and peak joint angles were determined, as well as hand segment velocity and path length. Significant correlations to BBT scores were found in peak shoulder flexion (FLEX) angle (r = -0.556, p-value = 0.009), peak (r = -0.479, p-value = 0.028), and average (ρ = -0.535, p-value = 0.012) wrist extension (EXT) angle, average mediolateral (ML) hand segment velocity (r = 0.494, p-value = 0.023), and path length (r = -0.522, p-value = 0.015). Additionally, significant differences between BBT scores (p-value = 0.005), peak shoulder FLEX (p-value = 0.024), and peak shoulder abduction (ABD) angle (p-value = 0.022) were found between the 7- and 11-year-old age groups. Peak elbow FLEX angle was significantly different (p-value = 0.049) between 9- and 11-year-old age groups. These results show that the BBT score could be related to the shoulder and wrist angle, as well as hand segment velocity and path length for typically developing children. Furthermore, root mean square deviation (RMSD) values less than 6° existed in all joint angles. Intraclass correlation coefficients (ICCs) greater than 0.75 were found in shoulder ABD (ICC = 0.79), forearm pronation (ICC = 0.81), wrist EXT (ICC = 0.75), and radial deviation (ICC = 0.87). Additionally, validation results between the marker-based and markerless systems show that there are differences in pose estimations and joint calculations based on rotation sequences. Overall, UE joint kinematics are shown to have correlations to BBT scores, so scores alone may not be indicative of movement quality in other patient populations. Markerless motion capture shows many benefits, however, it should be noted that, due to the complexity of upper extremity motion analysis, understanding what joint rotation sequences align the best with task-specific motions is important.