Browsing by Author "Harich, Kim"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- From L-Dopa to Dihydroxyphenylacetaldehyde: A Toxic Biochemical Pathway Plays a Vital Physiological Function in InsectsVavricka, Christopher J.; Han, Qian; Huang, Yongping; Erickson, Sara M.; Harich, Kim; Christensen, Bruce M.; Li, Jianyong (PLOS, 2011-01-24)One protein in Aedes aegypti, classified into the aromatic amino acid decarboxylase (AAAD) family based on extremely high sequence homology (∼70%) with dopa decarboxylase (Ddc), was biochemically investigated. Our data revealed that this predicted AAAD protein use L-dopa as a substrate, as does Ddc, but it catalyzes the production of 3,4-dihydroxylphenylacetaldehyde (DHPAA) directly from L-dopa and apparently has nothing to do with the production of any aromatic amine. The protein is therefore named DHPAA synthase. This subsequently led to the identification of the same enzyme in Drosophila melanogaster, Anopheles gambiae and Culex quinquefasciatus by an initial prediction of putative DHPAA synthase based on sequence homology and subsequent verification of DHPAA synthase identity through protein expression and activity assays. DHPAA is highly toxic because its aldehyde group readily reacts with the primary amino groups of proteins, leading to protein crosslinking and inactivation. It has previously been demonstrated by several research groups that Drosophila DHPAA synthase was expressed in tissues that produce cuticle materials and apparent defects in regions of colorless, flexible cuticular structures have been observed in its gene mutants. The presence of free amino groups in proteins, the high reactivity of DHPAA with the free amino groups, and the genetically ascertained function of the Drosophila DHPAA synthase in the formation of colorless, flexible cuticle, when taken together, suggest that mosquito and Drosophila DHPAA synthases are involved in the formation of flexible cuticle through their reactive DHPAA-mediated protein crosslinking reactions. Our data illustrate how a seemingly highly toxic pathway can serve for an important physiological function in insects.
- Overexpression of AtLOV1 in Switchgrass Alters Plant Architecture, Lignin Content, and Flowering TimeXu, Bin; Sathitsuksanoh, Noppadon; Tang, Yuhong; Udvardi, Michael K.; Zhang, Ji-Yi; Shen, Zhengxing; Balota, Maria; Harich, Kim; Zhang, Y. H. Percival; Zhao, Bingyu Y. (2012-12-26)Background: Switchgrass (Panicum virgatum L.) is a prime candidate crop for biofuel feedstock production in the United States. As it is a self-incompatible polyploid perennial species, breeding elite and stable switchgrass cultivars with traditional breeding methods is very challenging. Translational genomics may contribute significantly to the genetic improvement of switchgrass, especially for the incorporation of elite traits that are absent in natural switchgrass populations. Methodology/Principal Findings: In this study, we constitutively expressed an Arabidopsis NAC transcriptional factor gene, LONG VEGETATIVE PHASE ONE (AtLOV1), in switchgrass. Overexpression of AtLOV1 in switchgrass caused the plants to have a smaller leaf angle by changing the morphology and organization of epidermal cells in the leaf collar region. Also, overexpression of AtLOV1 altered the lignin content and the monolignol composition of cell walls, and caused delayed flowering time. Global gene-expression analysis of the transgenic plants revealed an array of responding genes with predicted functions in plant development, cell wall biosynthesis, and flowering. Conclusions/Significance: To our knowledge, this is the first report of a single ectopically expressed transcription factor altering the leaf angle, cell wall composition, and flowering time of switchgrass, therefore demonstrating the potential advantage of translational genomics for the genetic improvement of this crop.