Browsing by Author "Hashem, Fawzy"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Antimicrobial Resistance, Virulence Properties and Genetic Diversity of Salmonella Typhimurium Recovered from Domestic and Imported SeafoodElbashir, Salah M.; Adnan, Adib M.; Bowers, John; DePaola, Angelo; Jahncke, Michael; Punchihewage-Don, Anuradha J.; Da Silva, Ligia V.; Hashem, Fawzy; Parveen, Salina (MDPI, 2023-06-30)The quantity of seafood imported and produced by domestic aquaculture farming has increased. Recently, it has been reported that multidrug-resistant (MDR) Salmonella Typhimurium may be associated with seafood. However, information is limited to the antimicrobial resistance, virulence properties, and genetic diversity of S. Typhimurium recovered from imported and domestic seafood. This study investigated the antimicrobial resistance, virulence properties, and genetic diversity of S. Typhimurium isolated from domestic and imported catfish, shrimp, and tilapia. A total of 127 isolates were tested for the presence of multidrug-resistance (MDR), virulence genes (invA, pagC, spvC, spvR), and genetic diversity using the Sensititre micro-broth dilution method, PCR, and pulsed-field gel electrophoresis (PFGE), respectively. All isolates were uniformly susceptible to six (amoxicillin/clavulanic acid, ceftiofur, ceftriaxone, imipenem, nitrofurantoin, and trimethoprim/sulfamethoxazole) of the 17 tested antimicrobials and genetically diverse. Fifty-three percent of the Salmonella isolates were resistant to at least one antimicrobial and 49% were multidrug resistant. Ninety-five percent of the isolates possessed the invA gene, 67% pagC, and 43% for both spvC, and spvR. The results suggest that S. Typhimurium recovered from seafood is frequently MDR, virulent, and have the ability to cause salmonellosis.
- Nitrogen and Sulfur Management in Soybean and Edamame Production in the Mid-Atlantic Coastal PlainBrooks, Keren Ruth (Virginia Tech, 2023-01-23)The United States is a world leader of soybean [Glycine max (L.) Merr.] production, but to maintain quality production at this level, soybean management needs to be continually monitored and improved. Sulfur (S) deficiencies in soybean have become more frequent in the U.S. due to fertilizer purity, emissions regulations, and higher yields. We completed a study for soybean grown in sandy loam soils in the mid-Atlantic coastal plain system to determine proper S fertilizer rate and application timing. Yields ranged from 1,236-4,051 kg ha-1. Neither S rate nor application timing influenced yield. S treatments increased methionine concentration (methionine = -0.0001 S rate2 + 0.002 S rate + 5.60). Sulfur fertilization can improve soybean quality and may impact marketability. Another study was conducted to determine optimal source and rate of S application for soybeans in the Mid-Atlantic coastal plain system. Yields ranged from 1,316-4,914 kg ha-1. While sulfur rate did not influence yield and fertilizer source responses were site-specific. Sulfur leaf tissue concentrations were directly related to S rate (S concentration = 0.004S rate + 2.103). Nutrient uptake responses to S fertility indicate the potential for S yield responses in the future when soils become S depleted and contain less available S. Soybean producers and retailers in the United States are interested in capitalizing on new edamame markets to provide a domestic product. To aid the shift from oilseed production to vegetable production, a study was conducted to determine the optimal N rate and N application timing for edamame yield and quality in the Mid-Atlantic coastal plain system. Nitrogen rate significantly increased yield one out of three years (Yield = 29.9N Rate + 3387) when all N was applied at planting but was not significant with split applications. Fertilizer rate and timing did not impact edamame maturity or final pod/bean quality. N fertilizer applied at-planting may aid edamame yield and profit for sandy loam soils in the mid-Atlantic, USA. Currently, mid-Atlantic coastal plain soils, coupled with S deposition, are able to supply enough S for soybean growth and development, but without fertilization soybean soils are being mined of S and will eventually become depleted. Sulfur must be monitored if future deficiencies are to be avoided. Nitrogen fertilizers may improve yield in vegetable soybean production. Both oilseed and vegetable soybean farmers should continue to monitor soil nutrient levels to ensure proper nutrition for soybean growth and development.