Browsing by Author "Hayes, Alec J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Characterization of the soybean genome in regions surrounding two loci for resistance to soybean mosaic virusHayes, Alec J. (Virginia Tech, 2003-08-01)Soybean mosaic virus (SMV), has been the cause of numerous and often devastating disease epidemics, causing reduction in both the quality and quantity of soybeans worldwide. Two important genes for resistance to SMV are Rsv1 and Rsv4. Alleles at the Rsv1 locus have been shown to control resistance to all but the most virulent strain of SMV. This locus has been mapped previously to the soybean F linkage group. Rsv4 is an SMV resistance locus independent of Rsv1 and confers resistance to all strains of SMV. This locus has not been mapped previously. The purpose of this study is to investigate the two genomic regions that contain these vitally important resistance genes. A population of 281 F2 individuals that had previously been genotyped for reaction to SMV was evaluated in a mapping study which combined bulk segregant analysis with Amplified Fragment Length Polymorphism (AFLP). A Rsv4-linked marker, R4-1, was identified that mapped to soybean linkage group D1b using a reference mapping population. More than 40 markers were mapped in the Rsv4 segregating population including eleven markers surrounding Rsv4. This will provide the necessary framework for the fine mapping of this important genetic locus. Previous work has located Rsv1 to a genomic region containing several important resistance genes including Rps3, Rpg1, and Rpv. An RFLP probe, NBS5, whose sequence closely resembles that of several cloned plant disease resistance genes has been mapped to this chromosomal region. The efficacy of using this sequence to identify potential disease resistance genes was assessed by screening a cDNA library to uncover a candidate disease resistance gene which corresponds to this NBS5 sequence. Two related sequence classes were identified that correspond to NBS5. Interestingly, one class corresponds to a full length gene closely resembling other previously cloned disease resistance genes offering evidence that this NBS5-derived clone is a candidate disease resistance gene. A new marker technique was developed by combining the speed and efficiency of AFLP with DNA sequence information from cloned disease resistance genes. Using this strategy, three new markers tightly linked to Rsv1 were identified. One of these markers, which maps 0.6 cM away from Rsv1, has motifs consistent with other cloned disease resistance genes, providing evidence that this approach is an efficient method for targeting genomic regions where disease resistance genes are located.
- Identification and genetic characterization of tobacco accessions possessing resistance to tobacco cyst nematodeHayes, Alec J. (Virginia Tech, 1995-05-05)Developing a flue-cured tobacco cultivar with high resistance to tobacco cyst nematode (TCN) is an important initiative in the Southern Piedmont of Virginia, where this pathogen causes severe yield losses. One hundred twenty eight lines representing a diverse geographic array of tobacco accessions, including cultivars from several types of tobacco, flue-cured-type tobacco introductions, and wild Nicotiana species were evaluated for TCN resistance under greenhouse conditions. Inheritance of TCN resistance has been reported to be closely linked or pleiotropic to inheritance of wildfire resistance. Consequently, accessions were also screened for wildfire resistance under greenhouse conditions to evaluate this relationship among a diverse group of tobacco accessions. Twenty-one accessions were identified with resistance to TCN. Response to the two pathogens was highly correlated. However, there was no relationship between resistance to the two pathogens for several accessions. 'KY 190', a fire-cured cultivar, possessed the N. longiflora source of wildfire resistance, but was found susceptible to TCN. This result seems to rule out pleiotropy and is consistent with the assertion that the two resistance genes are closely linked. six TCN resistant lines and two susceptible lines were selected and a diallel study was conducted to determine the inheritance of resistance to TCN. Additive gene action contributed significantly to inheritance of TCN resistance. Three accessions, 'Burley 64', 'Kutsaga 110', and 'Tl 1597', were determined to be the most promising parents for use in a breeding program designed to develop a flue-cured cultivar with a high level of TCN resistance.