Browsing by Author "Helm, Emma T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Evaluation of digestively resistant or soluble fibers, short- and medium-chain fatty acids, trace minerals, and antibiotics in nonchallenged nursery pigs on performance, digestibility, and intestinal integrityKerr, Brian J.; Trachsel, Julian M.; Bearson, Bradley L.; Loving, Crystal L.; Bearson, Shawn M. D.; Byrne, Kristen A.; Pearce, Sarah C.; Ramirez, Shelby M.; Gabler, Nicholas K.; Schweer, Wesley P.; Helm, Emma T.; De Mille, Carson M. (Oxford University Press, 2022-11)Nonantibiotic in-feed additives have limited effects on performance, nutrient digestibility, and intestinal function when supplemented to diets fed to nursery pigs. Lay Summary In-feed antimicrobials have been an important technology in swine production for protecting health and supporting growth. However, with legislative restrictions on the use of most antibiotics for growth promotion, research is needed to evaluate in-feed additives in replacing this growth promoting technology. Thus, strategies to enhance energy and nutrient digestibility, intestinal function and integrity, gastrointestinal volatile fatty acid concentrations, and microbial ecology in nursery pigs are desirable targets. The results of the three experiments conducted herein do not indicate that supplementing diets with digestively resistant but fermentable fibers, short-medium-chain fatty acids, or antibiotics have a consistent positive or negative effect on markers of intestinal integrity or barrier function, VFA patterns (ileal, cecal, or colon), ATTD of energy and nutrients, or pig performance. Three experiments (EXP) were conducted to determine the effect of feed additives on performance, intestinal integrity, gastrointestinal volatile fatty acids (VFA), and energy and nutrient digestion in nonchallenged nursery pigs. In EXP 1, 480 pigs (6.36-kg body weight, BW) were placed into 96 pens with 5 pigs/pen, and allotted to 1 of 10 dietary treatments: 1) negative control containing no feed additive (NC), 2) NC + 44 mg chlortetracycline and 38.5 mg tiamulin/kg diet (CTsb), 3) NC + 5% resistant potato starch (RSpo), 4) NC + 5% soluble corn fiber (SCF), 5) NC + 5% sugar beet pulp (SBP), 6) NC + 0.30% fatty acid mix (FAM), 7) NC + 0.10% phytogenic blend of essential oils and flavoring compounds (PHY), 8) NC + 50 mg Cu and 1,600 mg zinc oxide/kg diet (CuZn), 9) NC + 5% resistant corn starch (RScn), and 10) NC + 0.05% beta-glucan (BG) for 28 d. There was no impact of dietary treatment on BW gain or feed intake (P >= 0.22). Pigs fed diets containing SCF, CTsb, and RSpo resulted in microbial community differences compared to pigs fed the NC (P < 0.05). In EXP 2, 48 barrows (12.8 kg BW) were selected at the end of EXP 1 and fed the same dietary treatments they had previously received: 1) NC, 2) NC + 5% RScn, 3) NC + 5% SCF, and 4) NC + FAM for 8 d. There was no effect of feeding diets containing RScn, SCF, or FAM on in vivo intestinal permeability (P <= 0.21). Ileal or colon pH, concentrations of VFA did not differ due to dietary treatment (P >= 0.36), but pigs fed diets containing FAM resulted in a greater butyric acid concentration in the cecum compared to pigs fed the NC (P <= 0.05). In EXP 3, 156 pigs (6.11 kg BW) were placed into 52 pens with 3 pigs/pen and allotted to 1 of 4 dietary treatments arranged in a factorial manner: 1) NC, 2) NC + 5% RSpo, 3) NC + 0.30% FAM, and 4) NC + 5% RSpo + 0.30% FAM for 24 d. Feeding pigs diets containing RSpo did not affect BW gain (P = 0.91) while pigs fed diets containing FAM grew improved BW gain (P = 0.09). Colonic butyric acid concentrations were greater in pigs fed diets containing RSpo (P = 0.03), while pigs fed diets containing FAM exhibited reduced total VFA concentrations (P = 0.11). The results indicate that supplementing diets with digestively resistant but fermentable fibers, short- and medium-chain fatty acids, or antibiotics do not have a consistent effect, positive or negative, on markers of intestinal integrity or barrier function, intestinal VFA patterns, ATTD of energy and nutrients, or on pig performance.
- Finisher lamb growth and rumen fermentation responses to the plane of nutrition and naturally occurring coccidiosisSujani, Sathya; dos Reis, Barbara R.; Ellett, Mark D.; Schramm, Holly H.; Helm, Emma T.; White, Robin R. (Frontiers, 2023-04)The objective of the present study was to investigate the interaction of plane of nutrition and naturally occurring coccidiosis on finisher lamb growth performance, FAMACHA score, and rumen volatile fatty acid profile. The study included 30 Su olk, Dorset or Su olk x Dorset lambs and were divided into 2 groups based on their initial body weight and assigned to 2 feeding groups di ering in dietary energy intake to create lambs representing divergent growth curves due to di ering nutritional management. Lambs with naturally occurring coccidiosis and healthy lambs were present in both feeding groups making a 2 x 2 factorial arrangement of treatments, (a) high plane of nutrition (HPN) lambs with no clinical coccidiosis diagnosis (HPNH), (b) HPN lambs with clinical coccidiosis (HPNC), (c) low plane of nutrition (LPN) lambs with no clinical coccidiosis diagnosis (LPNH), (d) LPN lambs with clinical coccidiosis (LPNC). Body weight and FAMACHA scores were recorded once every 2 weeks. On d 65 of feeding, lambs were slaughtered, and rumen fluid samples were collected and analyzed for volatile fatty acid concentrations. All response variables were analyzed statistically using a linear mixed e ects model with fixed e ects for plane of nutrition, health status, and a randome ect for initial body weight nested within the pen. The total and average weight gain were not associated with planes of nutrition, health status, or the interaction. Health status had an impact on FAMACHA (c) score (P = 0.047) and concentration of isobutyrate (P = 0.037) and tended to a ect total VFA (P = 0.085) and acetate (P = 0.071) concentrations. The interaction between the plane of nutrition and the health status tended to a ect butyrate concentration (P = 0.058). These data support the conclusion that coccidiosis infection impacted on rumen fermentation in a manner independent of the plane of nutrition; however, the translation of these rumen level impacts did not translate to the production responses.
- Lawsonia intracellularis infected enterocytes lack sucrase-isomaltase which contributes to reduced pig digestive capacityHelm, Emma T.; Burrough, Eric R.; Leite, Fernando L.; Gabler, Nicholas K. (2021-06-19)Abstract Lawsonia intracellularis is endemic to swine herds worldwide, however much is still unknown regarding its impact on intestinal function. Thus, this study aimed to characterize the impact of L. intracellularis on digestive function, and how vaccination mitigates these impacts. Thirty-six L. intracellularis negative barrows were assigned to treatment groups (n = 12/trt): (1) nonvaccinated, L. intracellularis negative (NC); (2) nonvaccinated, L intracellularis challenged (PC); and (3) L. intracellularis challenged, vaccinated (Enterisol® Ileitis, Boehringer Ingelheim) 7 weeks pre-challenge (VAC). On days post-inoculation (dpi) 0 PC and VAC pigs were inoculated with L. intracellularis. From dpi 19–21 fecal samples were collected for apparent total tract digestibility (ATTD) and at dpi 21, pigs were euthanized for sample collection. Post-inoculation, ADG was reduced in PC pigs compared with NC (41%, P < 0.001) and VAC (25%, P < 0.001) pigs. Ileal gross lesion severity was greater in PC pigs compared with NC (P = 0.003) and VAC (P = 0.018) pigs. Dry matter, organic matter, nitrogen, and energy ATTD were reduced in PC pigs compared with NC pigs (P ≤ 0.001 for all). RNAscope in situ hybridization revealed abolition of sucrase-isomaltase transcript in the ileum of PC pigs compared with NC and VAC pigs (P < 0.01). Conversely, abundance of stem cell signaling markers Wnt3, Hes1, and p27Kip1 were increased in PC pigs compared with NC pigs (P ≤ 0.085). Taken together, these data demonstrate that reduced digestibility during L. intracellularis challenge is partially driven by abolition of digestive machinery in lesioned tissue. Further, vaccination mitigated several of these effects, likely from lower bacterial burden and reduced disease severity.