Browsing by Author "Helms, Alyssa B."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Comparison of a Point-of-Care Analyzer With a Chemiluminescent Immunoassay for Serum Progesterone Measurement in Breeding Management of the BitchZuercher, Julia; Boes, Katie M.; Balogh, Orsolya; Helms, Alyssa B.; Cecere, Julie T. (Frontiers, 2021-05-13)Accurate serum progesterone measurements for timing bitches during breeding management is critical for reproductive practice, especially as artificial insemination has become routine to facilitate breeding of animals that are geographically or temporally separated. To measure serum progesterone, chemiluminescent immunoassay (CLIA) has replaced radioimmunoassay as the current standard in the bitch due to its high correlation and increased practicality. In January 2019, a colorimetric point-of-care (POC) immunoassay for quantitative in-clinic canine serum progesterone measurements in <30min was released. This study provides an independent comparison of the POC (Catalyst One, IDEXX) to the current industry standard, CLIA (Immulite-2000, Siemens). To assess inter-assay imprecision of POC and agreement of the POC and CLIA results, 100 canine serum samples were analyzed on three analyzers (POC-1, POC-2, and CLIA), of which, 74 (POC-1) and 75 (POC-2) results were within POCs’ reportable range of 0.2–20 ng/mL and included in the study. To assess intra-assay imprecision, pooled canine serum samples at low (L1), intermediate (L2), and high (L3) progesterone concentrations were analyzed ten times each on POC-1 and CLIA. Relative to CLIA, POC values showed good correlation (POC-1, r² = 0.9366; POC-2, r² = 0.9438, P < 0.0001) and significant positive proportional bias at values >2 ng/mL. The POC inter-assay coefficients of variation (CVs) were 13.2% (0.2–2.9 ng/mL, 0.6–9.2 nmol/L, L1), 10.0% (3.0–9.9 ng/mL, 9.5–31.5 nmol/L, L2), 7.1% (10.0–20.0 ng/mL, 31.8–63.6 nmol/L, L3), and 11.2%(all samples). The intra-assay CVs for POC (L1, 15.3%; L2, 7.0%; L3, 4.7%) were higher than those for CLIA (L1, 5.89%; L2, 4.89%; L3, 3.44%). Based on the more rapid increase in serial serum progesterone concentrations in ovulating bitches and the greater imprecision of the POC, the clinical interpretations of serum progesterone measurements as they relate to canine breeding management should be made with caution.
- Presumptive identification of smooth Brucella strain antibodies in caninesHelms, Alyssa B. (Virginia Tech, 2021-10-11)Brucellosis is a zoonotic disease caused by a Gram-negative coccobacillus. There are four Brucella strains of zoonotic importance in our domestic species, subdivided by their culture phenotypes: Brucella abortus (B. abortus, B. melitensis, B. suis (smooth strains) and B. canis (rough strain). Dogs can serve as hosts for all four of the zoonotic strains; however, routine serologic testing in dogs has been limited to the identification of antibodies to B. canis. The aim of our study was to identify a serologic test that can be utilized to identify smooth Brucella strain antibodies in canines. We hypothesize that the Brucella abortus Fluorescence Polarization Assay would be successful in identifying antibodies to smooth Brucella strain in canines. Ninety-five dogs, including forty-five hog hunting dogs were screened for circulating antibodies to any of the four zoonotic strains of the bacteria utilizing a combination of Canine Brucella Slide Agglutination Test (CBSA), Brucella canis Agar Gel Immunodiffusion II test (AGID), Brucella abortus Card Agglutination Test (BCA), and the Brucella abortus Fluorescence Polarization Assay (FPA). Test interpretation results yielded a 0% (0/95) smooth Brucella strain seropositivity rate, with 2% (2/95) of dogs yielding inconclusive rough Brucella strain serology results (0-2% rough strain seropositivity rate). Additionally, a retrospective portion of the study was performed to identify sera containing circulating antibodies to any of the smooth strains of Brucella by testing previously banked canine serum samples stored at Cornell's Veterinary Diagnostic Laboratory from 2018-2019 via Brucella abortus FPA. Of the 769 serum samples tested, 13/769 (1.7%) yielded an inconclusive result, 725/769 (94.2%) were negative, 30/769 (4%) yielded a positive FPA test result, and 1/769 (0.1%) had to be excluded due to insufficient sample remaining to perform the diagnostic test. Of the 30 FPA positive canine serum samples, 97% (29/30) also tested positive on the CBSA test. Additionally, there was a statistically significant (p <0.0001) likelihood of altered (spayed/neutered) and mixed breed dogs to be FPA positive when compared to intact, purebred dogs.
- Presumptive Identification of Smooth Brucella Strain Antibodies in CaninesHelms, Alyssa B.; Balogh, Orsolya; Franklin-Guild, Rebecca; Lahmers, Kevin K.; Caswell, Clayton C. (Frontiers, 2021-07-08)Brucellosis is a zoonotic disease caused by a Gram-negative coccobacillus. There are four Brucella strains of zoonotic importance in our domestic species, subdivided by their culture phenotypes: Brucella abortus (B. abortus), B. melitensis, B. suis (smooth strains) and B. canis (rough strain). Dogs can serve as hosts for all four of the zoonotic strains; however, routine serologic testing in dogs has been limited to the identification of B. canis antibodies. The aim of our study was to identify smooth Brucella strain antibodies in canines. We hypothesize that the Brucella abortus Fluorescence Polarization Assay would be successful in identifying smooth Brucella strain antibodies in canines. Ninety-five dogs, including forty-five hog hunting dogs were screened for circulating antibodies to any of the four zoonotic strains of the bacteria utilizing a combination of Canine Brucella Slide Agglutination Test (CBSA), Brucella canis Agar Gel Immunodiffusion II test (AGIDII), Brucella abortus Card Agglutination Test (BCA), and the Brucella abortus Fluorescence Polarization Assay (FPA). Test interpretation results yielded a 0% (0/95) smooth Brucella strain seropositivity rate, with 2% (2/95) of dogs yielding inconclusive rough Brucella strain serology results (0–2% rough strain seropositivity rate). Additionally, a retrospective portion of the study was performed to identify sera containing circulating antibodies to any of the smooth strains of Brucella by testing previously banked canine serum samples stored at Cornell’s Veterinary Diagnostic Laboratory from 2018 to 2019 via Brucella abortus FPA. Of the 769 serum samples tested, 13/769 (1.7%) yielded an inconclusive result, 725/769 (94.2%) were negative, 30/769 (4%) yielded a positive FPA test result, and 1/769 (0.1%) had to be excluded due to insufficient sample remaining to perform the diagnostic test. Of the 30 FPA positive canine serum samples, 97% (29/30) also tested positive on the CBSA test. Additionally, there was a statistically significant (p < 0.0001) likelihood of altered (spayed/neutered) and mixed breed dogs to be FPA positive when compared to intact, purebred dogs, respectively.