Browsing by Author "Heminger, Ariel R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Establishment of the predator Laricobius nigrinus, introduced as a biological control agent for hemlock woolly adelgid in Virginia, USAJubb, Carrie S.; McAvoy, Thomas J.; Stanley, Kari E.; Heminger, Ariel R.; Salom, Scott M. (Springer, 2021-01-05)Laricobius nigrinus Fender (Coleoptera: Derodontidae), a predatory beetle native to western North America, has been released since 2003 for management of hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), a non-native pest killing hemlocks in eastern North America. Over 420,000 L. nigrinus have been released in the eastern USA from field and lab-reared sources, 14,000 of which were deployed in the Commonwealth of Virginia, USA. In order to determine the establishment rates of L. nigrinus in Virginia, surveys were conducted in 2017 and 2018 at all release sites within this state. During the study, stand-level HWA densities were estimated, and hemlock tree health and predator–prey ratios were quantified. The identification of Laricobius spp. recoveries were made using microsatellite analysis. During the period of the study, L. nigrinus were found to have established at 82% of Virginia release sites and were the primary species recovered (80%). Both Laricobius rubidus (18%) and hybrids (2%) were also recovered. Stand-level HWA densities varied greatly over sites and years but showed a general decline in year two of the study. Establishment at such a high percentage of release sites suggests that the climate in Virginia is suitable for the predator and the insect is adaptable to the wide variety of site conditions where hemlocks typically grow.
- Horsenettle (Solanum carolinense) fruit bacterial communities are not variable across fine spatial scalesHeminger, Ariel R.; Belden, Lisa K.; Barney, Jacob N.; Badgley, Brian D.; Haak, David C. (PeerJ, 2021-11-08)Fruit house microbial communities that are unique from the rest of the plant. While symbiotic microbial communities complete important functions for their hosts, the fruit microbiome is often understudied compared to other plant organs. Fruits are reproductive tissues that house, protect, and facilitate the dispersal of seeds, and thus they are directly tied to plant fitness. Fruit microbial communities may, therefore, also impact plant fitness. In this study, we assessed how bacterial communities associated with fruit of Solanum carolinense, a native herbaceous perennial weed, vary at fine spatial scales (<0.5 km). A majority of the studies conducted on plant microbial communities have been done at large spatial scales and have observed microbial community variation across these large spatial scales. However, both the environment and pollinators play a role in shaping plant microbial communities and likely have impacts on the plant microbiome at fine scales. We collected fruit samples from eight sampling locations, ranging from 2 to 450 m apart, and assessed the fruit bacterial communities using 16S rRNA gene amplicon sequencing. Overall, we found no differences in observed richness or microbial community composition among sampling locations. Bacterial community structure of fruits collected near one another were not more different than those that were farther apart at the scales we examined. These fine spatial scales are important to obligate out-crossing plant species such as S. carolinense because they are ecologically relevant to pollinators. Thus, our results could imply that pollinators serve to homogenize fruit bacterial communities across these smaller scales.
- Impact of the introduced predator, Laricobius nigrinus, on ovisacs of the overwintering generation of hemlock woolly adelgid in the eastern United StatesJubb, Carrie S.; Heminger, Ariel R.; Mayfield, Albert E.; Elkinton, Joseph S.; Wiggins, Gregory J.; Grant, Jerome F.; Lombardo, Jeffrey A.; McAvoy, Thomas J.; Crandall, Ryan S.; Salom, Scott M. (2020-04)Hemlock woolly adelgid (HWA), Adelges tsugae Annand (Hemiptera: Adelgidae), is an invasive pest causing significant mortality to eastern and Carolina hemlock in eastern North America. Since 2003, management of HWA has included targeted release of the HWA predator Laricobius nigrinus Fender (Coleoptera: Derodontidae), native to western North America. Establishment of L. nigrinus at release sites is well documented, but investigations of its impact on HWA populations have been limited. A four-year (2014-2018), two-phase study using predator exclusion cages to assess the impact of L. nigrinus on HWA was conducted at nine previous release sites in the eastern United States. Significantly more HWA sistens ovisacs were disturbed on no-cage and open-cage branches than on caged branches where predators were excluded. Mean disturbance levels on cage, no-cage and open-cage branches was 8, 38, and 27 percent, respectively. Seven of nine sites had a mean HWA ovisac disturbance greater than 50% for at least one year. Winter temperatures were also a significant factor in overall mortality of the sistens generation with a mean of 46% on study branches. Six of nine sites had a mean overall mortality (winter mortality and predation) greater than 80% for at least one year. Larvae of Laricobius spp. were recovered at all sites during this study. Sequencing of the COI gene from recoveries in Phase One (2015 and 2016) indicated that 88% were L. nigrinus and 12% were L. rubidus LeConte. Microsatellite analysis performed during Phase Two (2017 and 2018) indicated that approximately 97% of larval recoveries were L. nigrinus, 2% were hybrids of L. nigrinus and L. rubidus, and 1% were L. rubidus. Results of this study suggest that L. nigrinus can significantly impact the HWA sistens generation ovisacs and continued investment in the use of this species as a biological control is recommended.