Browsing by Author "Hemley, Russell J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Theoretical study of a five-coordinated silica polymorphBadro, J.; Teter, D. M.; Downs, R. T.; Gillet, P.; Hemley, Russell J.; Barrat, J. L. (American Physical Society, 1997-09-01)Theoretical calculations are performed to study transformations in silica as a function of nonhydrostatic stress. Molecular-dynamics calculations reveal a crystalline-to-crystalline transition from alpha-quartz to a phase with five-coordinated silicon (Si-V) at high pressure in the presence of deviatoric stress. The phase, which appears for specific orientations of the stress tensor relative to the crystallographic axes of quartz, is a crystalline polymorph of silica with five-coordinated silicon. The structure possesses P3(2)21 space-group symmetry. First-principles calculations within the local-density approximation, as well as molecular dynamics and energy minimization with interatomic potentials, find this phase to be mechanically and energetically stable with respect to quartz at high pressure. The calculated x-ray diffraction pattern and vibrational properties of the phase are reported. Upon decompression, the Si-V phase reverts to alpha-quartz through an intermediate four-coordinated phase and an unusual isosymmetrical phase transformation. The results suggest the importance of application of nonhydrostatic stress conditions in the design and synthesis of novel materials.
- X-ray diffraction study of the pressure-induced bcc-to-hcp phase transition in the highly magnetostrictive Fe0.81Ga0.19 alloyAhart, Muhtar; Devreugd, Christopher P.; Li, Jiefang; Viehland, Dwight D.; Gehring, Peter M.; Hemley, Russell J. (American Physical Society, 2013-11-07)High-pressure x-ray diffraction measurements were performed at room temperature on single crystals of the highly magnetostrictive alloy Fe0.81Ga0.19 (galfenol). This alloy has a bcc crystal structure at ambient pressure but undergoes a bcc-to-hcp phase transition at 24 GPa on compression. A large hysteresis loop is observed in which the reversed transition occurs at 13 GPa on decompression. The midpoint of this transition is 18.5 GPa. The measured bulk modulus of this material is 182 (+/- 17) GPa, which is comparable to that of pure iron. As with iron, the hcp structure of the alloy can be derived from a compression of the bcc lattice along [001] that is accompanied by shearing along [1 (1) over bar0]. Our results indicate that the addition of Ga shifts the bcc-to-hcp transition from 13 GPa in pure iron to 18.5 GPa, and we speculate that this is due to the larger atomic radius of Ga. A uniaxial loading of 3 GPa completely suppresses the diffuse scattering in Fe0.81Ga0.19. We ascertain that the magnetostrictive properties of the alloy are reduced under pressure.