Browsing by Author "Hemmings, Ginger"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Boxwood phyllosphere fungal and bacterial communities and their differential responses to film-forming anti-desiccantsLi, Xiaoping; Omolehin, Olanike; Hemmings, Ginger; Tseng, Hsien T.; Taylor, Amanda; Taylor, Chad; Kong, Ping; Daughtrey, Margery; Luster, Douglas; Gouker, Fred; Hong, Chuanxue (2023-08-12)Background Anti-desiccant is a class of agrochemicals widely used to protect plants from water stresses, rapid temperature variations, heat and sunburn, frost and freeze damages, transplant shock, and pathogen and pest attack. Although anti-desiccants are generally considered non-toxic to organisms, it is unclear whether they may impact the phyllosphere microbial communities. In this study, three film-forming anti-desiccant products, TransFilm, Vapor Gard, and Wilt-Pruf were applied to the canopy of two boxwood cultivars ‘Vardar Valley’ and ‘Justin Brouwers’ on April 13 and August 26, 2021. Shoot samples were collected from boxwood plants treated with each of the three products, as well as nontreated control on June 16, August 26 (before the second treatment), and October 18. Microbial and plant genomic DNA was isolated together and 16S rRNA gene and the extended internal transcribed spacer regions were amplified with PCR and sequenced on a Nanopore MinION platform for bacterial and fungal identification. Results Bacterial communities were more diverse than fungal communities. At the phylum level, the boxwood phyllosphere was dominated by Proteobacteria and Ascomycota; at the genus level, Methylobacterium and Shiraia were the most abundant bacteria and fungi, respectively. Among the three film-forming anti-desiccants, Vapor Gard and Wilt-Pruf had more impact than TransFilm on the microbial communities. Specifically, broader impacts were observed on fungal than bacterial community composition and structure, with most affected fungi being suppressed while bacteria promoted. Conclusion This study addressed several major knowledge gaps regarding boxwood phyllosphere microbiota and the impact of anti-desiccants on plant microbiome. We identified diverse microbial communities of boxwood, a major evergreen woody crop and an iconic landscape plant. We also found differential effects of three film-forming anti-desiccants on the composition and structure of bacterial and fungal communities. These findings advanced our understanding of the associated microbiome of this landmark plant, enabling growers to fully utilize the potentials of microbiome and three anti-desiccants in improving boxwood health and productivity.
- Characterization of Boxwood Shoot Bacterial Communities and Potential Impact from Fungicide TreatmentsLi, Xiaoping; Tseng, Hsien Tzer; Hemmings, Ginger; Omolehin, Olanike; Taylor, Chad; Taylor, Amanda; Kong, Ping; Daughtrey, Margery; Gouker, Fred; Hong, Chuanxue (American Society for Microbiology, 2023-04)Agrochemicals are important tools for safeguarding plants from invasive pathogens, insects, mites, and weeds. How they may affect the plant microbiome, a critical component of crop health and production, was poorly understood. Phyllosphere bacterial communities play important roles in plant fitness and growth. The objective of this study was to characterize the epiphytic and endophytic bacterial communities of boxwood shoots and determine how they may respond to commonly used fungicides. In early summer and early fall, shoot samples were collected immediately before and 1, 7, and 14days after three fungicides containing chlorothalonil and/or propiconazole were applied to the canopy. Total genomic DNA from shoot surface washings and surface-sterilized shoot tissues was used as the template for 16S rRNA metabarcoding, and the amplicons were sequenced on a Nanopore MinION sequencer to characterize the epiphytic and endophytic communities. The bacterial communities were phylogenetically more diverse on the boxwood shoot surface than in the internal tissue, although the two communities shared 12.7% of the total 1,649 identified genera. The most abundant epiphytes were Methylobacterium and Pantoea, while Stenotrophomonas and Brevundimonas were the dominant endophytes. Fungicide treatments had strong impacts on epiphytic bacterial community structure and composition. Analysis of compositions of microbiomes with bias correction (ANCOM-BC) and analysis of variance (ANOVA)-like differential expression (ALDEx2) together identified 312 and 1,362 epiphytes changed in abundance due to fungicide treatments in early summer and early fall, respectively, and over 50% of these epiphytes were negatively impacted by fungicide. The two chlorothalonil-based contact fungicides demonstrated more marked effects than the propiconazole-based systemic fungicide. These results are foundational for exploring and utilizing the full potential of the microbiome and fungicide applications and developing a systems approach to boxwood health and production. IMPORTANCE Agrochemicals are important tools for safeguarding plants from invasive pathogens, insects, mites, and weeds. How they may affect the plant microbiome, a critical component of crop health and production, was poorly understood. Here, we used boxwood, an iconic low-maintenance landscape plant, to characterize shoot epiphytic and endophytic bacterial communities and their responses to contact and systemic fungicides. This study expanded our understanding of the above-ground microbiome in ornamental plants and is foundational for utilizing the full benefits of the microbiome in concert with different fungicide chemistries to improve boxwood health. This study also sets an example for a more thorough evaluation of these and other agrochemicals for their effects on boxwood microbiomes during production and offers an expanded systems approach that could be used with other crops for enhanced integrated pest management.