Browsing by Author "Henao-Guerrero, Natalia"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Agreement between Electrical Cardiometry and Pulmonary Artery Thermodilution for Measuring Cardiac Output in Isoflurane-Anesthetized DogsParanjape, Vaidehi V.; Henao-Guerrero, Natalia; Menciotti, Giulio; Saksena, Siddharth; Agostinho, Manuela (MDPI, 2023-04-21)In animals, invasive pulmonary artery thermodilution (PATD) is a gold standard for cardiac output (CO) monitoring, but it is impractical in clinical settings. This study evaluates the agreement between PATD and noninvasive electrical cardiometry (EC) for measuring CO and analyzes the other EC-derived hemodynamic variables in six healthy anesthetized dogs subjected to four different hemodynamic events in a sequential order: (1) euvolemia (baseline); (2) hemorrhage (33% blood volume loss); (3) autologous blood transfusion; and (4) 20 mL/kg colloid bolus. The CO measurements obtained using PATD and EC are compared using Bland–Altman analysis, Lin’s concordance correlation (LCC), and polar plot analysis. Values of p < 0.05 are considered significant. The EC measurements consistently underpredict the CO values as compared with PATD, and the LCC is 0.65. The EC’s performance is better during hemorrhage, thus indicating its capability in detecting absolute hypovolemia in clinical settings. Even though the percentage error exhibited by EC is 49.4%, which is higher than the standard (<30%), EC displays a good trending ability. Additionally, the EC-derived variables display a significant correlation with the CO measured using PATD. Noninvasive EC may have a potential in monitoring trends in hemodynamics in clinical settings.
- A Comparison of Dobutamine, Norepinephrine, Vasopressin, and Hetastarch for the Treatment of Isoflurane-Induced Hypotension in Healthy, Normovolemic DogsHenao-Guerrero, Natalia; Ricco-Pereira, Carolina H.; Paranjape, Vaidehi V. (MDPI, 2023-08-19)Isoflurane is a commonly used inhalation anesthetic in species undergoing veterinary care that induces hypotension, impacting organ perfusion, making it imperative to minimize its occurrence or identify effective strategies for treating it. This study evaluated and compared the hemodynamic effects of DOB, NEP, VAS, and HES in twelve isoflurane-anesthetized Beagle dogs. The order of the first three treatments was randomized. HES was administered last. Data were collected before treatments (baseline) and after 10 min of a sustained MAP of <45 mmHg induced by a high end-tidal isoflurane concentration (T0). Once treatment was initiated and the target MAP was achieved (65 to 80 mmHg) or the maximum dose reached, data were collected after 15 min of stabilization (T1) and 15 min after (T2). A 15 min washout period with a MAP of ≥65 mmHg was allowed between treatments. The intravenous dosage regimens started and were increased by 50% every five minutes until the target MAP or maximum dose was reached. The dosages were as follows: DOB, 5–15 μg/kg/min; NEP, 0.1–2 μg/kg/min; VAS, 0.5–5 mU/kg/min; and HET, 6% 1–20 mL/kg/min. DOB improved CO, DO2, and VO2, but reduced SVR. VAS elevated SVR, but decreased CO, DO2, and VO2. HES minimally changed BP and mildly augmented CO, DO2, and VO2. These treatments failed to reach the target MAP. NEP increased the arterial BP, CO, MPAP, and PAWP, but reduced HR. Norepinephrine infusion at 0.44 ± 0.19 μg/kg/min was the most efficient therapy for correcting isoflurane-induced hypotension.
- Esophageal Doppler-derived indices and arterial load variables provide useful hemodynamic information during assessment of fluid responsiveness in anesthetized dogs undergoing acute changes in blood volumeParanjape, Vaidehi; Henao-Guerrero, Natalia; Menciotti, Giulio; Saksena, Siddharth (2023-02)OBJECTIVE To investigate the relationship between invasively measured stroke volume (SV) and (1) esophageal Doppler-derived indices such as stroke distance (StrokeD), flow time corrected (FTc), stroke distance variation (SDV), and peak velocity variation (PVV); and (2) arterial load (AL) variables during evaluation of fluid responsiveness (FR) in anesthetized dogs undergoing sudden hemodynamic shifts in blood volume. ANIMALS 6 healthy male dogs. PROCEDURES Dogs were anesthetized with isoflurane, ventilated mechanically, and instrumented to undergo sequential, nonrandomized experimental stages. The dogs transitioned from normovolemia (NORMO-BL) to hypovolemia (30% blood loss; HYPO-30), followed by autologous blood transfusion, and then to hypervolemia (colloid bolus). During each stage, SV was quantified using pulmonary artery thermodilution and its relationship with StrokeD, FTc, SDV, and PVV; and AL variables such as effective arterial elastance (Ea), dynamic arterial elastance (Eadyn), and total arterial compliance (Ca) were established. RESULTS As SV decreased significantly during HYPO-30 compared to NORMO-BL, there was a significant (P < .001) decrease in StrokeD, FTc, and Ca, with simultaneous increases in SDV, PVV, Ea, and Eadyn. Upon restoration of blood volume, these values stabilized closer to NORMO-BL. A significant (P < .001) correlation was observed between SV and StrokeD, FTc, Ea, Eadyn, and Ca. CLINICAL RELEVANCE Minimally invasive StrokeD, FTc, SDV, and PVV act as SV surrogates and help assess FR during different blood volume stages in healthy dogs. During hypovolemia-induced hypotension, Ea, Eadyn, and Ca may be able to guide therapeutic decisions favoring improvement in blood pressure and SV.
- Evaluation of Electrical Cardiometry for Measuring Cardiac Output and Derived Hemodynamic Variables in Comparison with Lithium Dilution in Anesthetized DogsParanjape, Vaidehi V.; Garcia-Pereira, Fernando L.; Menciotti, Giulio; Saksena, Siddharth; Henao-Guerrero, Natalia; Ricco-Pereira, Carolina H. (MDPI, 2023-07-20)Numerous cardiac output (CO) technologies were developed to replace the ‘gold standard’ pulmonary artery thermodilution due to its invasiveness and the risks associated with it. Minimally invasive lithium dilution (LiD) shows excellent agreement with thermodilution and can be used as a reference standard in animals. This study evaluated CO via noninvasive electrical cardiometry (EC) and acquired hemodynamic variables against CO measured using LiD in six healthy, anesthetized dogs administered different treatments (dobutamine, esmolol, phenylephrine, and high-dose isoflurane) impacting CO values. These treatments were chosen to cause drastic variations in CO, so that fair comparisons between EC and LiD across a wide range of CO values (low, intermediate, and high) could be made. Statistical analysis included linear regression, Bland–Altman plots, Lin’s concordance correlation coefficient (ρc), and polar plots. Values of p < 0.05 represented significance. Good agreement was observed between EC and LiD, but consistent underestimation was noted when the CO values were high. The good trending ability, ρc of 0.88, and low percentage error of ±31% signified EC’s favorable performance. Other EC-acquired variables successfully tracked changes in CO measured using LiD. EC may be a pivotal hemodynamic tool for continuously monitoring circulatory changes, as well as guiding and treating cardiovascular anesthetic complications in clinical settings.
- Non-Thermal Irreversible Electroporation (N-TIRE) and Adjuvant Fractionated Radiotherapeutic Multimodal Therapy for Intracranial Malignant Glioma in a Canine PatientGarcia, Paulo A.; Pancotto, Theresa E.; Rossmeisl, John H. Jr.; Henao-Guerrero, Natalia; Gustafson, N. R.; Daniel, Gregory B.; Robertson, John L.; Ellis, Thomas L.; Davalos, Rafael V. (Adenine Press, 2011-02-01)Non-thermal irreversible electroporation (N-TIRE) has shown promise as an ablative therapy for a variety of soft-tissue neoplasms. Here we describe the therapeutic planning aspects and first clinical application of N-TIRE for the treatment of an inoperable, spontaneous malignant intracranial glioma in a canine patient. The N-TIRE ablation was performed safely, effectively reduced the tumor volume and associated intracranial hypertension, and provided sufficient improvement in neurological function of the patient to safely undergo adjunctive fractionated radiotherapy (RT) according to current standards of care. Complete remission was achieved based on serial magnetic resonance imaging examinations of the brain, although progressive radiation encephalopathy resulted in the death of the dog 149 days after N-TIRE therapy. The length of survival of this patient was comparable to dogs with intracranial tumors treated via standard excisional surgery and adjunctive fractionated external beam RT. Our results illustrate the potential benefits of N-TIRE for in vivo ablation of undesirable brain tissue, especially when traditional methods of cytoreductive surgery are not possible or ideal, and highlight the potential radiosensitizing effects of N-TIRE on the brain.
- Orthostatic hypotension secondary to a suspected thymoma in a dog: a case reportHansford, Jeremy; Henao-Guerrero, Natalia (2020-10-13)Background This is the first case report description, to our knowledge, of a cranial mediastinal mass (suspected thymoma) causing orthostatic hypotension in a dog. Case presentation A Labrador Retriever presented for urethral stent placement during cystoscopy secondary to transitional cell carcinoma diagnosis. During anesthesia, the patient had unexpected severe and poorly-responsive hypotension following a shift in position. Several days later, an intrathoracic mass was discovered, raising concerns that the position of the mass in relation to the great vessels and heart may have been the cause of the hypotension. The patient returned for a second stent placement, and computed tomography of the chest confirmed a cranial mediastinal mass, most suspected to be thymoma based on the results of cytology. The patient was kept in sternal recumbency, but when re-positioning to left lateral recumbency, there was a dramatic blood pressure drop that corrected with a return to sternal positioning. Conclusions To our knowledge, orthostatic hypotension has not been described in relation to thymoma in dogs. Thymomas are rare; however, they may be associated with disease of autonomic dysfunction, such as myasthenia gravis, that may lead to orthostatic hypotension. This has been described within the human literature, and we hypothesize it was present in the currently described case. Concurrently, thymomas may grow to a substantial size and cause direct compression of the intrathoracic vasculature. As such, it should be on the differential list for poorly-responsive hypotension following a shift in body positioning under anesthesia.
- Performance of four cardiac output monitoring techniques vs. intermittent pulmonary artery thermodilution during a modified passive leg raise maneuver in isoflurane-anesthetized dogsParanjape, Vaidehi V.; Henao-Guerrero, Natalia; Menciotti, Giulio; Saksena, Siddharth (Frontiers, 2023-09-14)Objective: This study investigated the performance among four cardiac output (CO) monitoring techniques in comparison with the reference method intermittent pulmonary artery thermodilution (iPATD) and their ability to diagnose fluid responsiveness (FR) during a modified passive leg raise (PLRM) maneuver in isoflurane-anesthetized dogs undergoing acute blood volume manipulations. The study also examined the simultaneous effect of performing the PLRM on dynamic variables such as stroke distance variation (SDV), peak velocity variation (PVV), and stroke volume variation (SVV). Study design: Prospective, nonrandomized, crossover design. Study animals: Six healthy male Beagle dogs. Methods: The dogs were anesthetized with propofol and isoflurane and mechanically ventilated under neuromuscular blockade. After instrumentation, they underwent a series of sequential, nonrandomized steps: Step 1: baseline data collection; Step 2: removal of 33 mL kg−1 of circulating blood volume; Step 3: blood re-transfusion; and Step 4: infusion of 20 mL kg−1 colloid solution. Following a 10-min stabilization period after each step, CO measurements were recorded using esophageal Doppler (EDCO), transesophageal echocardiography (TEECO), arterial pressure waveform analysis (APWACO), and electrical cardiometry (ECCO). Additionally, SDV, PVV, and SVV were recorded. Intermittent pulmonary artery thermodilution (iPATDCO) measurements were also recorded before, during, and after the PLRM maneuver. A successful FR diagnosis made using a specific test indicated that CO increased by more than 15% during the PLRM maneuver. Statistical analysis was performed using one-way analysis of variance for repeated measures with post hoc Tukey test, linear regression, Lin’s concordance correlation coefficient (ρc), and Bland–Altman analysis. Statistical significance was set at p < 0.05. Results: All techniques detected a reduction in CO (p < 0.001) during hemorrhage and an increase in CO after blood re-transfusion and colloid infusion (p < 0.001) compared with baseline. During hemorrhage, CO increases with the PLRM maneuver were as follows: 33% for iPATD (p < 0.001), 19% for EC (p = 0.03), 7% for APWA (p = 0.97), 39% for TEE (p < 0.001), and 17% for ED (p = 0.02). Concurrently, decreases in SVV, SDV, and PVV values (p < 0.001) were also observed. The percentage error for TEE, ED, and EC was less than 30% but exceeded 55% for APWA. While TEECO and ECCO slightly underestimated iPATDCO values, EDCO and APWACO significantly overestimated iPATDCO values. TEE and EC exhibited good and acceptable agreement with iPATD. However, CO measurements using all four techniques and iPATD did not differ before, during, and after PLRM at baseline, blood re-transfusion, and colloid infusion. Conclusion and clinical relevance: iPATD, EC, TEE, and ED effectively assessed FR in hypovolemic dogs during the PLRM maneuver, while the performance of APWA was unacceptable and not recommended. SVV, SDV, and PVV could be used to monitor CO changes during PLRM and acute blood volume manipulations, suggesting their potential clinical utility.
- Successful Treatment of a Large Soft Tissue Sarcoma With Irreversible ElectroporationNeal, Robert E. III; Rossmeisl, John H. Jr.; Garcia, Paulo A.; Lanz, Otto I.; Henao-Guerrero, Natalia; Davalos, Rafael V. (American Society of Clinical Oncology, 2011-05-01)Irreversible electroporation (IRE) is a promising technique for the focal treatment of pathologic tissues that involves placing minimally invasive electrodes within the targeted region. A series of short, intense electric pulses are then applied to destabilize the cell membrane, presumably by creating nanopores,¹ inducing cell death in a nonthermal manner.² The unique therapeutic mechanism of IRE does not rely on tissue temperature changes, as with hyperthermic or cryoablative procedures.³,⁴ Therefore, IRE preserves the extracellular matrix, major tissue vasculature, and other sensitive structures.⁵⁻⁷ Treated regions resolve rapidly,⁵ with submillimeter resolution between treated and unaffected cells,⁸ and are predictable with numerical modeling.⁹ Treatments promote an immune response,⁵,¹⁰,¹¹ are unaltered by blood flow, can be administered quickly (approximately 5 minutes), and can be visualized in real time.¹⁰,¹²