Browsing by Author "Herndon, David R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Comparative genomic analysis and phylogenetic position of Theileria equiKappmeyer, Lowell S.; Thiagarajan, Mathangi; Herndon, David R.; Ramsay, Joshua D.; Caler, Elisabet; Djikeng, Appolinaire; Gillespie, Joseph J.; Lau, Audrey O. T.; Roalson, Eric H.; Silva, Joana C.; Silva, Marta G.; Suarez, Carlos E.; Ueti, Massaro W.; Nene, Vishvanath M.; Mealey, Robert H.; Knowles, Donald P.; Brayton, Kelly A. (2012-11-09)Background Transmission of arthropod-borne apicomplexan parasites that cause disease and result in death or persistent infection represents a major challenge to global human and animal health. First described in 1901 as Piroplasma equi, this re-emergent apicomplexan parasite was renamed Babesia equi and subsequently Theileria equi, reflecting an uncertain taxonomy. Understanding mechanisms by which apicomplexan parasites evade immune or chemotherapeutic elimination is required for development of effective vaccines or chemotherapeutics. The continued risk of transmission of T. equi from clinically silent, persistently infected equids impedes the goal of returning the U. S. to non-endemic status. Therefore comparative genomic analysis of T. equi was undertaken to: 1) identify genes contributing to immune evasion and persistence in equid hosts, 2) identify genes involved in PBMC infection biology and 3) define the phylogenetic position of T. equi relative to sequenced apicomplexan parasites. Results The known immunodominant proteins, EMA1, 2 and 3 were discovered to belong to a ten member gene family with a mean amino acid identity, in pairwise comparisons, of 39%. Importantly, the amino acid diversity of EMAs is distributed throughout the length of the proteins. Eight of the EMA genes were simultaneously transcribed. As the agents that cause bovine theileriosis infect and transform host cell PBMCs, we confirmed that T. equi infects equine PBMCs, however, there is no evidence of host cell transformation. Indeed, a number of genes identified as potential manipulators of the host cell phenotype are absent from the T. equi genome. Comparative genomic analysis of T. equi revealed the phylogenetic positioning relative to seven apicomplexan parasites using deduced amino acid sequences from 150 genes placed it as a sister taxon to Theileria spp. Conclusions The EMA family does not fit the paradigm for classical antigenic variation, and we propose a novel model describing the role of the EMA family in persistence. T. equi has lost the putative genes for host cell transformation, or the genes were acquired by T. parva and T. annulata after divergence from T. equi. Our analysis identified 50 genes that will be useful for definitive phylogenetic classification of T. equi and closely related organisms.
- A U.S. isolate of Theileria orientalis, Ikeda genotype, is transmitted to cattle by the invasive Asian longhorned tick, Haemaphysalis longicornisDinkel, Kelcey D.; Herndon, David R.; Noh, Susan M.; Lahmers, Kevin K.; Todd, S. Michelle; Ueti, Massaro W.; Scoles, Glen A.; Mason, Kathleen L.; Fry, Lindsay M. (BMC, 2021-03-16)Background: Theileria orientalis is a tick-borne hemoparasite that causes anemia, ill thrift, and death in cattle globally. The Ikeda strain of T.orientalis is more virulent than other strains, leading to severe clinical signs and death of up to 5% of affected animals. Within the Asia–Pacific region, where it affects 25% of Australian cattle, T.orientalis Ikeda has a significant economic impact on the cattle industry. In 2017, T.orientalis Ikeda was detected in a cattle herd in Albermarle County, Virginia, United States. Months earlier, the U.S. was alerted to the invasion of the Asian longhorned tick, Haemaphysalis longicornis, throughout the eastern U.S. Abundant H.longicornis ticks were identified on cattle in the T.orientalis-affected herd in VA, and a subset of ticks from the environment were PCR-positive for T.orientalis Ikeda. A strain of T.orientalis from a previous U.S. outbreak was not transmissible by H.longicornis; however, H.longicornis is the primary tick vector of T.orientalis Ikeda in other regions of the world. Thus, the objective of this study was to determine whether invasive H.longicornis ticks in the U.S. are competent vectors of T.orientalis Ikeda. Methods: Nymphal H.longicornis ticks were fed on a splenectomized calf infected with the VA-U.S.-T.orientalis Ikeda strain. After molting, a subset of adult ticks from this cohort were dissected, and salivary glands assayed for T.orientalis Ikeda via qPCR. The remaining adult ticks from the group were allowed to feed on three calves. Calves were subsequently monitored for T.orientalis Ikeda infection via blood smear cytology and PCR. Results: After acquisition feeding on a VA-U.S.-T.orientalis Ikeda-infected calf as nymphs, a subset of molted adult tick salivary glands tested positive by qPCR for T.orientalis Ikeda. Adult ticks from the same cohort successfully transmitted T.orientalis Ikeda to 3/3 naïve calves, each of which developed parasitemia reaching 0.4–0.9%. Conclusions: Our findings demonstrate that U.S. H.longicornis ticks are competent vectors of the VA-U.S.-T.orientalis Ikeda strain. This data provides important information for the U.S. cattle industry regarding the potential spread of this parasite and the necessity of enhanced surveillance and control measures.[Figure not available: see fulltext.].