Browsing by Author "Hervig, Mark E."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Decadal and Annual Variations in Meteoric Flux From Ulysses, Wind, and SOFIE ObservationsHervig, Mark E.; Malaspina, David; Sterken, Veerle; Wilson, Lynn B. III; Hunziker, Silvan; Bailey, Scott M. (American Geophysical Union, 2022-10)Our solar system is filled with meteoric particles, or cosmic dust, which is either interplanetary or interstellar in origin. Interstellar dust (ISD) enters the heliosphere due to the relative motion of the sun and the interstellar flow. Interplanetary dust (IPD) comes primarily from asteroid collisions or comet sublimation, and comprises the bulk of material entering Earth's atmosphere. This study examines variations in ISD and the IPD flux at Earth using observations from three different satellite techniques. First are size-resolved in situ meteoroid detections by the Ulysses spacecraft, and second are in situ indirect dust observations by Wind. Third are measurements of meteoric smoke in the mesosphere by the Solar Occultation For Ice Experiment (SOFIE). Wind and Ulysses observations are sorted into the interstellar and interplanetary components. Wind ISD show the anticipated correlation to the 22-year solar magnetic cycle, and are consistent with model predictions of ISD. Because Wind does not discriminate particle size, the IPD measurements were interpreted using meteoric mass distributions from Ulysses observations and from different models. Wind observations during 2007-2020 indicate a total meteoric influx at Earth of 22 metric tons per day (t d(-1)), in reasonable agreement with long-term averages from SOFIE (25 t d(-1)) and Ulysses (32 t d(-1)). The SOFIE and Wind influx time series both show an unexpected correlation to the 22-year solar cycle. This relationship could be an artifact, or may indicate that IPD responds to changes in the solar magnetic field.
- On the relative roles of dynamics and chemistry governing the abundance and diurnal variation of low-latitude thermospheric nitric oxideSiskind, David E.; Jones, McArthur Jr.; Drob, Douglas P.; McCormack, John P.; Hervig, Mark E.; Marsh, Daniel R.; Mlynczak, Martin G.; Bailey, Scott M.; Maute, Astrid; Mitchell, Nicholas J. (European Geosciences Union, 2019-01-25)We use data from two NASA satellites, the Thermosphere Ionosphere Energetics and Dynamics (TIMED) and the Aeronomy of Ice in the Mesosphere (AIM) satellites, in conjunction with model simulations from the thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) to elucidate the key dynamical and chemical factors governing the abundance and diurnal variation of lower thermospheric nitric oxide (NO) at near-solar minimum conditions and low latitudes. This analysis was enabled by the recent orbital precession of the AIM satellite which caused the solar occultation pattern measured by the Solar Occultation for Ice Experiment (SOFIE) to migrate down to low and mid-latitudes for specific periods of time. We use a month of NO data collected in January 2017 to compare with two versions of the TIME-GCM; one is driven solely by climatological tides and analysis-derived planetary waves at the lower boundary and is free running at all other altitudes, and the other is constrained by a high-altitude analysis from the Navy Global Environmental Model (NAVGEM) up to the mesopause. We also compare SOFIE data with a NO climatology from the nitric oxide empirical model (NOEM). Both SOFIE and NOEM yield peak NO abundances of around 4 x 10(7) cm(-3); however, the SOFIE profile peaks about 6-8 km lower than NOEM. We show that this difference is likely a local time effect, with SOFIE being a dawn measurement and NOEM representing late morning and/or near noon. The constrained version of TIME-GCM exhibits a low-altitude dawn peak, while the model that is forced solely at the lower boundary and free running above does not. We attribute this difference to a phase change in the semi-diurnal tide in the NAVGEM-constrained model, causing the descent of high NO mixing ratio air near dawn. This phase difference between the two models arises due to differences in the mesospheric zonal mean zonal winds. Regarding the absolute NO abundance, all versions of the TIME-GCM overestimate this. Tuning the model to yield calculated atomic oxygen in agreement with TIMED data helps but is insufficient. Furthermore, the TIME-GCM underestimates the electron density (Ne) as compared with the International Reference Ionosphere (IRI) empirical model. This suggests a potential conflict with the requirements of NO modeling and Ne modeling, since one solution typically used to increase model Ne is to increase the solar soft X-ray flux, which would, in this case, worsen the NO model-data discrepancy.
- Persistence of upper stratospheric wintertime tracer variability into the Arctic spring and summerSiskind, David E.; Nedoluha, Gerald E.; Sassi, Fabrizio; Rong, Pingping; Bailey, Scott M.; Hervig, Mark E.; Randall, Cora E. (European Geophysical Union, 2016)Using data from the Aeronomy of Ice in the Mesosphere (AIM) and Aura satellites, we have categorized the interannual variability of winter- and springtime upper stratospheric methane (CH4). We further show the effects of this variability on the chemistry of the upper stratosphere throughout the following summer. Years with strong wintertime mesospheric descent followed by dynamically quiet springs, such as 2009, lead to the lowest summertime CH4. Years with relatively weak wintertime descent, but strong springtime planetary wave activity, such as 2011, have the highest summertime CH4. By sampling the Aura Microwave Limb Sounder (MLS) according to the occultation pattern of the AIM Solar Occultation for Ice Experiment (SOFIE), we show that summertime upper stratospheric chlorine monoxide (ClO) almost perfectly anticorrelates with the CH4. This is consistent with the reaction of atomic chlorine with CH4 to form the reservoir species, hydrochloric acid (HCl). The summertime ClO for years with strong, uninterrupted mesospheric descent is about 50aEuro-% greater than in years with strong horizontal transport and mixing of high CH4 air from lower latitudes. Small, but persistent effects on ozone are also seen such that between 1 and 2aEuro-hPa, ozone is about 4-5aEuro-% higher in summer for the years with the highest CH4 relative to the lowest. This is consistent with the role of the chlorine catalytic cycle on ozone. These dependencies may offer a means to monitor dynamical effects on the high-latitude upper stratosphere using summertime ClO measurements as a proxy. Additionally, these chlorine-controlled ozone decreases, which are seen to maximize after years with strong uninterrupted wintertime descent, represent a new mechanism by which mesospheric descent can affect polar ozone. Finally, given that the effects on ozone appear to persist much of the rest of the year, the consideration of winter/spring dynamical variability may also be relevant in studies of ozone trends.
- Trends in the polar summer mesosphere temperature and pressure altitude from satellite observationsBailey, Scott M.; Thurairajah, Brentha; Hervig, Mark E.; Siskind, David E.; Russell, James M. III; Gordley, Larry L. (2021-09-01)Time series of mesospheric temperature and pressure altitude are produced through combining observations by the Halogen Occultation Experiment (HALOE), Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER), and Solar Occultation for Ice Experiment (SOFIE) instruments. Time series of both temperature and pressure altitude are produced through the combination of HALOE/SABER providing 29 years in length and HALOE/SOFIE providing 22 years in length. The different sampling of the three instruments constrains the time series to June in the northern hemisphere and December in the southern hemisphere and 6470 degrees in both hemispheres. We interpret the time series by fitting them to simple descriptions of the variations including solar, intra-hemispheric, inter-hemispheric, and linear trend terms. The inferred intra- and inter-hemispheric terms show that dynamical influences rival solar variability in the mesosphere. We find a robust result that the mesosphere is in general cooling at most altitudes at approximately 1-2 K per decade in response to greenhouse gas increases. That cooling leads to a shrinking of the atmosphere on the order of 100-200 m per decade. The shrinking leads to a reduction in cooling and eventually a warming near 0.005 hPa due to hydrostatic contraction.
- Two- and three-dimensional structures of the descent of mesospheric trace constituents after the 2013 sudden stratospheric warming elevated stratopause eventSiskind, David E.; Harvey, V. Lynn; Sassi, Fabrizio; McCormack, John P.; Randall, Cora E.; Hervig, Mark E.; Bailey, Scott M. (2021-09-22)We use the Specified Dynamics version of the Whole Atmosphere Community Climate Model Extended (SD-WACCMX) to model the descent of nitric oxide (NO) and other mesospheric tracers in the extended, elevated stratopause phase of the 2013 sudden stratospheric warming (SSW). The dynamics are specified with a high-altitude version of the Navy Global Environmental Model (NAVGEMHA). Consistent with our earlier published results, we find that using a high-altitude meteorological analysis to nudge WACCMX allows for a realistic simulation of the descent of lower-thermospheric nitric oxide down to the lower mesosphere, near 60 km. This is important because these simulations only included auroral electrons and did not consider additional sources of NO from higher-energy particles that might directly produce ionization, and hence nitric oxide, below 80-85 km. This suggests that the so-called energetic particle precipitation indirect effect (EPP-IE) can be accurately simulated, at least in years of low geomagnetic activity, such as 2013, without the need for additional NO production, provided the meteorology is accurately constrained. Despite the general success of WACCMX in bringing uppermesospheric NO down to 55-60 km, a detailed comparison of the WACCMX fields with the analyzed NAVGEMHA H2O and satellite NO and H2O data from the Solar Occultation for Ice Experiment (SOFIE) and the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) reveals significant differences in the latitudinal and longitudinal distributions at lower altitudes. This stems from the tendency for WACCMX descent to maximize at sub-polar latitudes, and while such sub-polar descent is seen in the NAVGEM-HA analysis, it is more transient than in the WACCMX simulation. These differences are linked to differences in the transformed Eulerian mean (TEM) circulation between NAVGEM-HA and WACCMX, most likely arising from differences in how gravity wave forcing is represented. To attempt to compensate for the differing distributions of model vs. observed NO and to enable us to quantify the total amount of upper-atmospheric NO delivered to the stratopause region, we use potential vorticity and equivalent latitude coordinates. Preliminary results suggest both model and observations are generally consistent with NO totals in the range of 0.1-0.25 gigamoles (GM).