Browsing by Author "Hilakivi-Clarke, Leena"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- BADGE: A novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq dataGu, Jinghua; Wang, Xiao; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2014-09-10)Background Recent advances in RNA sequencing (RNA-Seq) technology have offered unprecedented scope and resolution for transcriptome analysis. However, precise quantification of mRNA abundance and identification of differentially expressed genes are complicated due to biological and technical variations in RNA-Seq data. Results We systematically study the variation in count data and dissect the sources of variation into between-sample variation and within-sample variation. A novel Bayesian framework is developed for joint estimate of gene level mRNA abundance and differential state, which models the intrinsic variability in RNA-Seq to improve the estimation. Specifically, a Poisson-Lognormal model is incorporated into the Bayesian framework to model within-sample variation; a Gamma-Gamma model is then used to model between-sample variation, which accounts for over-dispersion of read counts among multiple samples. Simulation studies, where sequencing counts are synthesized based on parameters learned from real datasets, have demonstrated the advantage of the proposed method in both quantification of mRNA abundance and identification of differentially expressed genes. Moreover, performance comparison on data from the Sequencing Quality Control (SEQC) Project with ERCC spike-in controls has shown that the proposed method outperforms existing RNA-Seq methods in differential analysis. Application on breast cancer dataset has further illustrated that the proposed Bayesian model can 'blindly' estimate sources of variation caused by sequencing biases. Conclusions We have developed a novel Bayesian hierarchical approach to investigate within-sample and between-sample variations in RNA-Seq data. Simulation and real data applications have validated desirable performance of the proposed method. The software package is available at http://www.cbil.ece.vt.edu/software.htm.
- A Bayesian approach for accurate de novo transcriptome assemblyShi, Xu; Wang, Xiao; Neuwald, Andrew F.; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2021-09-03)De novo transcriptome assembly from billions of RNA-seq reads is very challenging due to alternative splicing and various levels of expression, which often leads to incorrect, mis-assembled transcripts. BayesDenovo addresses this problem by using both a read-guided strategy to accurately reconstruct splicing graphs from the RNA-seq data and a Bayesian strategy to estimate, from these graphs, the probability of transcript expression without penalizing poorly expressed transcripts. Simulation and cell line benchmark studies demonstrate that BayesDenovo is very effective in reducing false positives and achieves much higher accuracy than other assemblers, especially for alternatively spliced genes and for highly or poorly expressed transcripts. Moreover, BayesDenovo is more robust on multiple replicates by assembling a larger portion of common transcripts. When applied to breast cancer data, BayesDenovo identifies phenotype-specific transcripts associated with breast cancer recurrence.
- BICORN: An R package for integrative inference of de novo cisregulatory modulesChen, Xi; Gu, Jinghua; Neuwald, Andrew F.; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (Springer Nature, 2020-05-14)Genome-wide transcription factor (TF) binding signal analyses reveal co-localization of TF binding sites based on inferred cis-regulatory modules (CRMs). CRMs play a key role in understanding the cooperation of multiple TFs under specific conditions. However, the functions of CRMs and their effects on nearby gene transcription are highly dynamic and context-specific and therefore are challenging to characterize. BICORN (Bayesian Inference of COoperative Regulatory Network) builds a hierarchical Bayesian model and infers context-specific CRMs based on TF-gene binding events and gene expression data for a particular cell type. BICORN automatically searches for a list of candidate CRMs based on the input TF bindings at regulatory regions associated with genes of interest. Applying Gibbs sampling, BICORN iteratively estimates model parameters of CRMs, TF activities, and corresponding regulation on gene transcription, which it models as a sparse network of functional CRMs regulating target genes. The BICORN package is implemented in R (version 3.4 or later) and is publicly available on the CRAN server at https://cran.r-project.org/web/packages/BICORN/index.html.
- BMRF-MI: integrative identification of protein interaction network by modeling the gene dependencyShi, Xu; Wang, Xiao; Shajahan, Ayesha; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2015-06-11)Background Identification of protein interaction network is a very important step for understanding the molecular mechanisms in cancer. Several methods have been developed to integrate protein-protein interaction (PPI) data with gene expression data for network identification. However, they often fail to model the dependency between genes in the network, which makes many important genes, especially the upstream genes, unidentified. It is necessary to develop a method to improve the network identification performance by incorporating the dependency between genes. Results We proposed an approach for identifying protein interaction network by incorporating mutual information (MI) into a Markov random field (MRF) based framework to model the dependency between genes. MI is widely used in information theory to measure the uncertainty between random variables. Different from traditional Pearson correlation test, MI is capable of capturing both linear and non-linear relationship between random variables. Among all the existing MI estimators, we choose to use k-nearest neighbor MI (kNN-MI) estimator which is proved to have minimum bias. The estimated MI is integrated with an MRF framework to model the gene dependency in the context of network. The maximum a posterior (MAP) estimation is applied on the MRF-based model to estimate the network score. In order to reduce the computational complexity of finding the optimal network, a probabilistic searching algorithm is implemented. We further increase the robustness and reproducibility of the results by applying a non-parametric bootstrapping method to measure the confidence level of the identified genes. To evaluate the performance of the proposed method, we test the method on simulation data under different conditions. The experimental results show an improved accuracy in terms of subnetwork identification compared to existing methods. Furthermore, we applied our method onto real breast cancer patient data; the identified protein interaction network shows a close association with the recurrence of breast cancer, which is supported by functional annotation. We also show that the identified subnetworks can be used to predict the recurrence status of cancer patients by survival analysis. Conclusions We have developed an integrated approach for protein interaction network identification, which combines Markov random field framework and mutual information to model the gene dependency in PPI network. Improvements in subnetwork identification have been demonstrated with simulation datasets compared to existing methods. We then apply our method onto breast cancer patient data to identify recurrence related subnetworks. The experiment results show that the identified genes are enriched in the pathway and functional categories relevant to progression and recurrence of breast cancer. Finally, the survival analysis based on identified subnetworks achieves a good result of classifying the recurrence status of cancer patients.
- ChIP-BIT2: a software tool to detect weak binding events using a Bayesian integration approachChen, Xi; Shi, Xu; Neuwald, Andrew F.; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2021-04-15)Background ChIP-seq combines chromatin immunoprecipitation assays with sequencing and identifies genome-wide binding sites for DNA binding proteins. While many binding sites have strong ChIP-seq ‘peak’ observations and are well captured, there are still regions bound by proteins weakly, with a relatively low ChIP-seq signal enrichment. These weak binding sites, especially those at promoters and enhancers, are functionally important because they also regulate nearby gene expression. Yet, it remains a challenge to accurately identify weak binding sites in ChIP-seq data due to the ambiguity in differentiating these weak binding sites from the amplified background DNAs. Results ChIP-BIT2 ( http://sourceforge.net/projects/chipbitc/) is a software package for ChIP-seq peak detection. ChIP-BIT2 employs a mixture model integrating protein and control ChIP-seq data and predicts strong or weak protein binding sites at promoters, enhancers, or other genomic locations. For binding sites at gene promoters, ChIP-BIT2 simultaneously predicts their target genes. ChIP-BIT2 has been validated on benchmark regions and tested using large-scale ENCODE ChIP-seq data, demonstrating its high accuracy and wide applicability. Conclusion ChIP-BIT2 is an efficient ChIP-seq peak caller. It provides a better lens to examine weak binding sites and can refine or extend the existing binding site collection, providing additional regulatory regions for decoding the mechanism of gene expression regulation.
- ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elementsChen, Xi; Neuwald, Andrew F.; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (PLoS, 2021-07-01)Transcription factors (TFs) often function as a module including both master factors and mediators binding at cis-regulatory regions to modulate nearby gene transcription. ChIPseq profiling of multiple TFs makes it feasible to infer functional TF modules. However, when inferring TF modules based on co-localization of ChIP-seq peaks, often many weak binding events are missed, especially for mediators, resulting in incomplete identification of modules. To address this problem, we develop a ChIP-seq data-driven Gibbs Sampler to infer Modules (ChIP-GSM) using a Bayesian framework that integrates ChIP-seq profiles of multiple TFs. ChIP-GSM samples read counts of module TFs iteratively to estimate the binding potential of a module to each region and, across all regions, estimates the module abundance. Using inferred module-region probabilistic bindings as feature units, ChIP-GSM then employs logistic regression to predict active regulatory elements. Validation of ChIPGSM predicted regulatory regions on multiple independent datasets sharing the same context confirms the advantage of using TF modules for predicting regulatory activity. In a case study of K562 cells, we demonstrate that the ChIP-GSM inferred modules form as groups, activate gene expression at different time points, and mediate diverse functional cellular processes. Hence, ChIP-GSM infers biologically meaningful TF modules and improves the prediction accuracy of regulatory region activities.
- CyNetSVM: A Cytoscape App for Cancer Biomarker Identification Using Network Constrained Support Vector MachinesShi, Xu; Banerjee, Sharmi; Chen, Li; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (PLOS, 2017-01-25)One of the important tasks in cancer research is to identify biomarkers and build classification models for clinical outcome prediction. In this paper, we develop a CyNetSVM software package, implemented in Java and integrated with Cytoscape as an app, to identify network biomarkers using network-constrained support vector machines (NetSVM). The Cytoscape app of NetSVM is specifically designed to improve the usability of NetSVM with the following enhancements: (1) user-friendly graphical user interface (GUI), (2) computationally efficient core program and (3) convenient network visualization capability. The CyNetSVM app has been used to analyze breast cancer data to identify network genes associated with breast cancer recurrence. The biological function of these network genes is enriched in signaling pathways associated with breast cancer progression, showing the effectiveness of CyNetSVM for cancer biomarker identification. The CyNetSVM package is available at Cytoscape App Store and http://sourceforge.net/projects/netsvmjava; a sample data set is also provided at sourceforge. Net.
- High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspringde Assis, Sonia; Wärri, Anni; Cruz, M. Idalia; Laja, Olusola; Tian, Ye; Zhang, Bai; Wang, Yue; Huang, Tim H. M.; Hilakivi-Clarke, Leena (Nature Publishing Group, 2012-01-01)Environmental factors can influence one's susceptibility to cancer, but it is not clear whether such an influence extends beyond the directly exposed generations. Here, feeding pregnant rats with a high-fat diet or a hormone derivative, the authors observe increased breast cancer risk in up to three subsequent generations.
- Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrenceChen, Xi; Gu, Jinghua; Neuwald, Andrew F.; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2021-01-11)Exploring complex modularization of intracellular signal transduction pathways is critical to understanding aberrant cellular responses during disease development and drug treatment. IMPALA (Inferred Modularization of PAthway LAndscapes) integrates information from high throughput gene expression experiments and genome-scale knowledge databases to identify aberrant pathway modules, thereby providing a powerful sampling strategy to reconstruct and explore pathway landscapes. Here IMPALA identifies pathway modules associated with breast cancer recurrence and Tamoxifen resistance. Focusing on estrogen-receptor (ER) signaling, IMPALA identifies alternative pathways from gene expression data of Tamoxifen treated ER positive breast cancer patient samples. These pathways were often interconnected through cytoplasmic genes such as IRS1/2, JAK1, YWHAZ, CSNK2A1, MAPK1 and HSP90AA1 and significantly enriched with ErbB, MAPK, and JAK-STAT signaling components. Characterization of the pathway landscape revealed key modules associated with ER signaling and with cell cycle and apoptosis signaling. We validated IMPALA-identified pathway modules using data from four different breast cancer cell lines including sensitive and resistant models to Tamoxifen. Results showed that a majority of genes in cell cycle/apoptosis modules that were up-regulated in breast cancer patients with short survivals (<5 years) were also over-expressed in drug resistant cell lines, whereas the transcription factors JUN, FOS, and STAT3 were down-regulated in both patient and drug resistant cell lines. Hence, IMPALA identified pathways were associated with Tamoxifen resistance and an increased risk of breast cancer recurrence. The IMPALA package is available at https://dlrl.ece.vt.edu/software/.
- mAPC-GibbsOS: an integrated approach for robust identification of gene regulatory networksShi, Xu; Gu, Jinghua; Chen, Xi; Shajahan, Ayesha; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua (2013-12-09)Background Identification of cooperative gene regulatory network is an important topic for biological study especially in cancer research. Traditional approaches suffer from large noise in gene expression data and false positive connections in motif binding data; they also fail to identify the modularized structure of gene regulatory network. Methods that are capable of revealing underlying modularized structure and robust to noise and false positives are needed to be developed. Results We proposed and developed an integrated approach to identify gene regulatory networks, which consists of a novel clustering method (namely motif-guided affinity propagation clustering (mAPC)) and a sampling based method (called Gibbs sampler based on outlier sum statistic (GibbsOS)). mAPC is used in the first step to obtain co-regulated gene modules by clustering genes with a similarity measurement taking into account both gene expression data and binding motif information. This clustering method can reduce the noise effect from microarray data to obtain modularized gene clusters. However, due to many false positives in motif binding data, some genes not regulated by certain transcription factors (TFs) will be falsely clustered with true target genes. To overcome this problem, GibbsOS is applied in the second step to refine each cluster for the identification of true target genes. In order to evaluate the performance of the proposed method, we generated simulation data under different signal-to-noise ratios and false positive ratios to test the method. The experimental results show an improved accuracy in terms of clustering and transcription factor identification. Moreover, an improved performance is demonstrated in target gene identification as compared with GibbsOS. Finally, we applied the proposed method to two breast cancer patient datasets to identify cooperative transcriptional regulatory networks associated with recurrence of breast cancer, as supported by their functional annotations. Conclusions We have developed a two-step approach for gene regulatory network identification, featuring an integrated method to identify modularized regulatory structures and refine their target genes subsequently. Simulation studies have shown the robustness of the method against noise in gene expression data and false positives in motif binding data. The proposed method has been applied to two breast cancer gene expression datasets to infer the hidden regulation mechanisms. The experimental results demonstrate the efficacy of the method in identifying key regulatory networks related to the progression and recurrence of breast cancer.