Browsing by Author "Hill, Justin Mitchell"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Shaping the Next Generation Air Transportation System with an Airspace Planning and Collaborative Decision Making ModelHill, Justin Mitchell (Virginia Tech, 2009-09-08)This dissertation contributes to the ongoing national project concerning the \emph{Next Generation Air Transportation System} (NextGen) that endeavors, in particular, to reshape the management of air traffic in the continental United States. Our work is part of this effort and mainly concerns modeling and algorithmic enhancements to the Airspace Planning and Collaborative Decision-Making Model (APCDM). First, we augment the APCDM to study an \emph{Airspace Flow Program} (AFP) in the context of weather-related disruptions. The proposed model selects among alternative flight plans for the affected flights while simultaneously (a) integrating slot-exchange mechanisms induced by multiple Ground Delay Programs (GDPs) to permit airlines to improve flight efficiencies through a mediated bartering of assigned slots, and (b) considering issues related to sector workloads, airspace conflicts, as well as overall equity concerns among the involved airlines in regard to accepted slot trades and flight plans. More specifically, the APCDM is enhanced to include the following: a. The revised model accommodates continuing flights, where some flight cannot depart until a prerequisite flight has arrived. Such a situation arises, for example, when the same aircraft will be used for the departing flight. b. We model a slot-exchange mechanism to accommodate flights being involved in multiple trade offers, and to permit slot trades at multiple GDP airports (whence the flight connection constraints become especially relevant). We also model flight cancelations whereby, if a flight assigned to a particular slot is canceled, the corresponding vacated slot would be made available for use in the slot-exchange process. c. Alternative equity concepts are presented, which more accurately reflect the measures used by the airlines. d. A reduced variant of the APCDM, referred to as \textbf{APCDM-Light}, is also developed. This model serves as a fast-running version of APCDM to be used for quick-turn analyses, where the level of modeling detail, as well as data requirements, are reduced to focus only on certain key elements of the problem. e. As an alternative for handling large-scale instances of APCDM more effectively, we present a \emph{sequential variable fixing heuristic} (SFH). The list of flights is first partitioned into suitable subsets. For the first subset, the corresponding decision variables are constrained to be binary-valued (which is the default for these decision variables), while the other variables are allowed to vary continuously between 0 and 1. If the resulting solution to this relaxed model is integral, the algorithm terminates. Otherwise, the binary variables are fixed to their currently prescribed values and another subset of variables is designated to be binary constrained. The process repeats until an integer solution is found or the heuristic encounters infeasibility. f. We experiment with using the APCDM model in a \emph{dynamic, rolling-horizon framework}, where we apply the model on some periodic basis (e.g., hourly), and where each sequential run of the model has certain flight plan selections that are fixed (such as flights that are already airborne), while we consider the selection among alternative flight plans for other imminent flights in a look-ahead horizon (e.g., two hours). These enhancements allow us to significantly expand the functionality of the original APCDM model. We test the revised model and its variants using realistic data derived from the \emph{Enhanced Traffic Management System} (ETMS) provided by the \emph{Federal Aviation Administration} (FAA). One of the new equity methods, which is based on average delay per passenger (or weighted average delay per flight), turns out to be a particularly robust way to model equity considerations in conjunction with sector workloads, conflict resolution, and slot-exchanges. With this equity method, we were able to solve large problem instances (1,000 flights) within 30 seconds on average using a 1\% optimality tolerance. The model also produced comparable solutions within about 20 seconds on average using the Sequential Fixing Heuristic (SFH). The actual solutions obtained for these largest problem instances were well within 1\% of the best known solution. Furthermore, our computations revealed that APCDM-Light can be readily optimized to a 0.01\% tolerance within about 5 seconds on average for the 1,000 flight problems. Thus, the augmented APCDM model offers a viable tool that can be used for tactical air traffic management purposes as an airspace flow program (particularly, APCDM-Light), as well as for strategic applications to study the impact of different types of trade restrictions, collaboration policies, equity concepts, and airspace sectorizations. The modeling of slot ownership in the APCDM motivates another problem: that of generating detoured flight plans that must arrive at a particular slot time under severe convective weather conditions. This leads to a particular class of network flow problems that seeks a shortest path, if it exists, between a source node and a destination node in a connected digraph $G(N,A)$, such that we arrive at the destination at a specified time while leaving the source no earlier than a lower bounding time, and where the availability of each network link is time-dependent in the sense that it can be traversed only during specified intervals of time. We refer to this problem as the \emph{reverse time-restricted shortest path problem} (RTSP). We show that RTSP is NP-hard in general and propose a dynamic programming algorithm for finding an optimal solution in pseudo-polynomial time. Moreover, under a special regularity condition, we prove that the problem is polynomially solvable with a complexity of order $O(|N