Browsing by Author "Horvath, Brandon J."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Accurate identification and grouping of Rhizoctonia isolates infecting turfgrasses in MD and VA and their sensitivity to selected fungicides in vitroAmaradasa, Bimal Sajeewa (Virginia Tech, 2011-07-19)Rhizoctonia blight (sensu lato) is a common and serious disease of many turfgrass species. The most widespread causal agent R. solani consists of several genetically different anastomosis groups (AGs) and subgroups. Though anastomosis or hyphal fusion reactions have been used to group Rhizoctonia species, they are time consuming and sometimes difficult to interpret. Anastomosis reactions are incapable of identifying isolates belonging to different AG subgroups within an AG. This study evaluated molecular techniques in comparison with traditional anastomosis grouping (AG) to identify and group isolates of Rhizoctonia. More than 400 Rhizoctonia isolates were collected from diseased turfgrass leaves from eight geographic areas in Virginia and Maryland. A random sample of 86 isolates was selected and initially characterized by colony morphology, nuclei staining and anastomosis grouping. Molecular identification was performed by analysis of rDNA-ITS region and DNA fingerprinting techniques universally primed PCR (UP-PCR) and amplified fragment length polymorphism (AFLP). The cladistic analysis of ITS sequences and UP-PCR fragments supported seven clusters. Isolates of R. solani AG 1-IB (n=18), AG 2-2IIIB (n=30) and AG 5 (n=1) clustered separately. Waitea circinata var. zeae (n=11), and var. circinata (n=4) grouped separately. A cluster of six isolates (UWC) did not fall into any known Waitea group. Most of the binucleate Rhizoctonia-like fungi (BNR) (n=16) grouped separately. AFLP grouping also largely agreed with the above results. However, UWC isolates clustered into two groups. Molecular analyses corresponded well with traditional anastomosis grouping by clustering isolates within an AG or AG subgroup together. UP-PCR cross-hybridization could distinguish closely related Rhizoctonia isolates to their infraspecies level. Genetically related isolates belonging to the same AG subgroups cross-hybridized strongly, while isolates of different AGs did not cross-hybridize or did so weakly. Sequence-characterized amplified region (SCAR) markers were generated from UP-PCR products to identify isolates of major pathogenic groups AG 1-IB and AG 2-2IIIB. Specific primer pairs successfully distinguished isolates of AG 1-IB and AG 2-2IIIB from isolates of other AGs. Sensitivity of Rhizoctonia species and AGs was tested in vitro to commercial formulations of iprodione, triticonazole and pyraclostrobin. W. circinata isolates were moderately sensitive to iprodione while isolates of R. solani and BNR were extremely sensitive. Isolates of AG 2-2IIIB showed less sensitivity to triticonazole than other Rhizoctonia isolates. W. circinata var. zeae isolates were moderately sensitive to pyraclostrobin while most of the other isolates were extremely sensitive.
- Comparing Digital and Visual Evaluations for Accuracy and Precision in Estimating Tall Fescue Brown Patch SeveritySykes, Virginia R.; Horvath, Brandon J.; Warnke, Scott E.; Askew, Shawn D.; Baudoin, Antonius B.; Goatley, James M. (2017-11)Brown patch (Rhizoctonia solani Kuhn), a destructive disease of tall fescue (Festuca arundinacea Schreb.), is typically evaluated visually. The subjectivity of visual evaluations may be reduced using technology like digital image analysis (DIA). This study compared DIA and visual evaluations for accuracy and precision of brown patch ratings of glasshouse grown tall fescue plants. Across four experiments, 112 plants were inoculated with R. solani. Disease was rated visually and using DIA-WP (digital image analysis whole plant canopy). In two experiments, disease evaluations were replicated using three images and three visual evaluations per pot. Absolute error was calculated as the difference between actual disease severity [calculated using an individual leaf DIA method previously quantified as highly predictive of actual brown patch disease severity on tall fescue (r(2) = 0.99)] and DIA-WP and visual evaluations, respectively. Standard deviations within repeated measures were also calculated. A mixed-model ANOVA was used to determine differences (P < 0.05) in mean absolute error and mean standard deviation by method, disease range, and method by disease range. Disease ranged from 0 to 100%. Mean absolute error did not differ between methods but did by disease range, exhibiting a bell-shaped curve from 0% to 100% disease severity. Mean standard deviation exhibited significant method by disease range interaction. Mean standard deviation did not differ across the disease range within DIA-WP evaluations but did across the disease range within visual evaluations. The more consistent precision of DIA across the disease range could reduce variability in brown patch evaluations of tall fescue.
- Evaluation of novel techniques to establish and transition overseeded grasses on bermudagrass sports turfMittlesteadt, Tyler Lee (Virginia Tech, 2009-04-29)Most professional turf in Virginia is comprised of bermudagrass (Cynodon dactylon L.) or (Cynodon dactylon x C. transvaalensis Burtt Davy) as a monoculture in summer and overseeded with perennial ryegrass (Lolium perenne L.) (PR) in winter, during bermudagrass dormancy. Two transitions are required in an overseeding program, fall establishment of PR and spring control of PR. During each transition, turf quality suffers as one grass dies or enters dormancy while another grass is promoted to fill voided areas. Field studies at various locations in Virginia were conducted to investigate methods of improving spring and fall transition. Bermudagrass green cover in August was influenced by duration of PR competition variably between three bermudagrass cultivars. For example, "Midiron", "Patriot", and "Riviera" bermudagrass required 218, 139, and 327 cumulative growing degree days at base 18.3 C (GDD) to reach 95% cover. Bermudagrass biomass was also positively correlated with increasing duration of noncompetitive GDD. Total nonstructural carbohydrates were not correlated to duration of PR competition. Novel application methods were invented and tested at Virginia Tech. Drip, sponge, and strip application methods were used to create patterns of PR control using selective herbicides. Controlling a portion of PR with these methods maintained acceptable turfgrass quality throughout the spring transition and improved bermudagrass cover 12 to 20%, speeding transition by 20 or more days. Efforts to improve PR establishment in dense bermudagrass suggest chemicals that injure existing bermudagrass can improve PR establishment, but cause unacceptable turf discoloration. Mechanical methods to disrupt the bermudagrass canopy had less effect on PR establishment than chemical treatments.
- Physiological and Environmental Basis of Turfgrass and Weed Response to Mesotrione FormulationsGoddard, Matthew Jordan Rhea (Virginia Tech, 2009-11-06)Mesotrione is the first triketone herbicide registered for use in turfgrass. Triketones prevent carotenoid biosynthesis by inhibiting the enzyme p-hydroxyphenylpyruvate dioxygenase (HPPD). Although mesotrione controls many species of grass and broadleaf weeds, it is best know for selective control of perennial grasses like creeping bentgrass (Agrostis stolonifera L.). Field trials conducted at Virginia Tech and Blacksburg Country Club determined that several programs that integrate herbicide treatment and turf seeding effectively transitioned creeping bentgrass contaminated golf roughs back to a tall fescue [Schedonorus phoenix (Scop.) Holub] monoculture. However, mature weeds require multiple mesotrione applications for effective control. This requirement is a major limitation to mesotrione's competitiveness in turfgrass markets. Several greenhouse and laboratory studies were conducted to evaluate scenarios where mesotrione rates were titrated and applied daily to mimic ascending, descending, and intervallic time-release patterns. These patterns were applied following an initial treatment to foliage or soil to mimic a potential sprayable or granular time-release formulation. These scenarios effectively controlled five targeted weed species equivalent to the standard of two broadcast sprays, regardless of initial application placement or release pattern. However, both time-release treatments and the standard injured tall fescue based on leaf counts, plant weights, and visual phytotoxicity ratings. Additional growth chamber studies found that changes in relative humidity from 50 to 90% caused a 4- to 18-fold increase in plant phytotoxicity with a concomitant decrease in photochemical efficiency when mesotrione was applied to foliage of smooth crabgrass (Digitaria ischaemum (Schreb.) Schreb. ex Muhl.). Furthermore, white tissue was found predominately in the two youngest leaves when mesotrione was applied to soil, but in older leaves when applied only to foliage. Laboratory studies were conducted to evaluate interspecific differences in 14C mesotrione absorption and translocation between two plant species when applied to foliage or roots. Annual bluegrass (Poa annua L.) absorbed 2- to 4-fold more radioactivity than Kentucky bluegrass (Poa pratensis L.). Both species absorbed less radioactivity through roots than through foliage and root absorbed radioactivity was more often exuded into Hoagland's solution while foliar absorbed radioactivity was often found in other foliage.
- Screening Tall Fescue for Resistance to Rhizoctonia solani and Rhizoctonia zeae Using Digital Image AnalysisSykes, Virginia R.; Horvath, Brandon J.; McCall, David S.; Baudoin, Antonius B.; Askew, Shawn D.; Goatley, James M.; Warnke, Scott E. (2020-02)Brown patch, caused by Rhizoctonia solani, is a destructive disease on tall fescue. Compared with R. solani, Rhizoctonia zeae causes indistinguishable symptoms in the field but varies in geographic distribution. This may contribute to geographic variability observed in the resistance response of improved brown patch resistant cultivars. This study examined R. solani and R. zeae susceptibility of four cultivars, selected based on brown patch performance in the National Turfgrass Evaluation Program (NTEP), and nine plant introductions (PIs). Twenty genotypes per Pl/cultivar were evaluated by using four clonal replicates in a randomized complete block design. Plants were inoculated under controlled conditions with two repetitions per pathogen. Disease severity was assessed digitally in APS Assess, and analysis of variance and correlations were performed in SAS 9.3. Mean disease severity was higher for R. solani (65%) than for R. zeae (49%) (P = 0.0137). Interaction effects with pathogen were not significant for PI (P = 0.0562) but were for genotype (P < 0.001). Moderately to highly resistant NTEP cultivars compared with remaining PIs exhibited lower susceptibility to R. zeae (P < 0.0001) but did not differ in susceptibility to R. solani (P = 0.7458). Correlations between R. solani and R. zeae disease severity were not significant for either PI (R = 0.06, P = 0.8436) or genotype (R = 0.11, P = 0.09). Breeding for resistance to both pathogens could contribute to a more geographically stable resistance response. Genotypes were identified with improved resistance to R. solani (40), R. zeae (122), and both pathogens (26).
- Turfgrass species composition, resistance mechanisms, and management strategy impacts on brown patch incidence and weed encroachmentCutulle, Matthew Anthony (Virginia Tech, 2011-08-23)Tall fescue (Festuca arundinacea Schreb.) has great utility as a low maintenance turfgrass in the northern and transition zone regions of the United States. However, it is difficult to successfully maintain tall fescue of high quality over consecutive summers because of its susceptibility to the fungal pathogen Rhizoctonia solani, which causes the disease brown patch. Not only is brown patch aesthetically unpleasing in a stand of tall fescue but it can also thin out the turf and allow for the encroachment of undesirable weedy species. Cultivar selection, cultural practices, mixing turf species and timing of pesticide applications all can impact the epidemiology of brown patch in tall fescue. Research was conducted in tall fescue to quantify chitinase activity in different cultivars, elucidate the impact of mowing height and nitrogen fertility on brown patch and bermudagrass (Cynodon dactylon L.) encroachment, to evaluate seeding mixtures of tall fescue with hybrid bluegrass (Poa pratensis x Poa arachnifera) on diseases and weeds as well as measuring the impact of the herbicide bispyribac-sodium on brown patch. Chitinase activity was greater in the tall fescue cultivar that was less susceptible to brown patch. In the mowing-fertility studies, cutting tall fescue at 10 cm generally reduced brown patch and bermudagrass encroachment compared to 6 cm. Mixing hybrid bluegrass with tall fescue reduced disease and weed species infestations compared to tall fescue alone. Applying bispyribac-sodium earlier in April resulted in less brown patch and better weed control compared to application in May. Based on this research brown patch severity and subsequent weed species infestations can be reduced by selecting a tall fescue cultivar with a high basal level of chitinase, mowing it at 10 cm and mixing it with a hybrid bluegrass cultivar.
- Use of digital image analysis to identify Rhizoctonia solani and Rhizoctonia zeae resistance in Festuca arundinacea plant introductionsSykes, Virginia Roseanna (Virginia Tech, 2009-04-22)Brown patch, caused by Rhizoctonia solani Kuhn, is an important disease on tall fescue (TF, Festuca arundinacea Schreb, synonym Schedonorus phoenix (Scop.) Holub). Rhizoctonia zeae Voorhees, a related pathogen, causes similar symptoms. Confusion over which Rhizoctonia species is causing symptoms and subjective visual evaluations of disease severity may contribute to variability in observed BP resistance of TF cultivars at multiple locations. The objectives of this study were to develop an objective digital image analysis (DIA) method for evaluating disease and to use DIA to screen tall fescue plant introductions (PIs) for resistance to R. solani and R. zeae. There was a strong correlation (r2 = 0.97) between actual disease severity, measured by applying lesioned tissue of a known area to healthy leaves, and DIA calculated disease severity using scanned images of individual leaves (DIA-IL). The accuracy and precision of visual evaluations and DIA evaluations of entire plants (DIA-WP) were evaluated using DIA-IL as a standard of accuracy. Accuracy of DIA-WP was not significantly different from visual evaluation accuracy. Precision was significantly higher for DIA-WP. Evaluation of PIs and putatively BP resistant TF cultivars for resistance to R. solani and R. zeae using DIA-WP identified clones within each PI that ranked high for resistance to R. solani or R. zeae. No clones were identified with high resistance to both R. solani and R. zeae. Improved precision of DIA evaluation methods and inclusion of R. zeae in BP resistance breeding may decrease variability of TF cultivar performance across locations.