Browsing by Author "Hossain, K.S.M. Tozammel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Forecasting the Flu: Designing Social Network Sensors for EpidemicsShao, Huijuan; Hossain, K.S.M. Tozammel; Wu, Hao; Khan, Maleq; Vullikanti, Anil Kumar S.; Prakash, B. Aditya; Marathe, Madhav V.; Ramakrishnan, Naren (Virginia Tech, 2016-03-08)Early detection and modeling of a contagious epidemic can provide important guidance about quelling the contagion, controlling its spread, or the effective design of countermeasures. A topic of recent interest has been to design social network sensors, i.e., identifying a small set of people who can be monitored to provide insight into the emergence of an epidemic in a larger population. We formally pose the problem of designing social network sensors for flu epidemics and identify two different objectives that could be targeted in such sensor design problems. Using the graph theoretic notion of dominators we develop an efficient and effective heuristic for forecasting epidemics at lead time. Using six city-scale datasets generated by extensive microscopic epidemiological simulations involving millions of individuals, we illustrate the practical applicability of our methods and show significant benefits (up to twenty-two days more lead time) compared to other competitors. Most importantly, we demonstrate the use of surrogates or proxies for policy makers for designing social network sensors that require from nonintrusive knowledge of people to more information on the relationship among people. The results show that the more intrusive information we obtain, the longer lead time to predict the flu outbreak up to nine days.
- Modeling Evolutionary Constraints and Improving Multiple Sequence Alignments using Residue CouplingsHossain, K.S.M. Tozammel (Virginia Tech, 2016-11-16)Residue coupling in protein families has received much attention as an important indicator toward predicting protein structures and revealing functional insight into proteins. Existing coupling methods identify largely pairwise couplings and express couplings over amino acid combinations, which do not yield a mechanistic explanation. Most of these methods primarily use a multiple protein sequence alignment---most likely a resultant alignment---which better exposes couplings and is obtained through manual tweaking of an alignment constructed by a classical alignment algorithm. Classical alignment algorithms primarily focus on capturing conservations and may not fully unveil couplings in the alignment. In this dissertation, we propose methods for capturing both pairwise and higher-order couplings in protein families. Our methods provide mechanistic explanations for couplings using physicochemical properties of amino acids and discernibility between orders. We also investigate a method for mining frequent episodes---called coupled patterns---in an alignment produced by a classical algorithm for proteins and for exploiting the coupled patterns for improving the alignment quality in terms of exposition of couplings. We demonstrate the effectiveness of our proposed methods on a large collection of sequence datasets for protein families.