Browsing by Author "Hou, Xuchu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Accurate Identification of Significant Aberrations in Cancer Genome: Implementation and ApplicationsHou, Xuchu (Virginia Tech, 2013-01-07)Somatic Copy Number Alterations (CNAs) are common events in human cancers. Identifying CNAs and Significant Copy number Aberrations (SCAs) in cancer genomes is a critical task in searching for cancer-associated genes. Advanced genome profiling technologies, such as SNP array technology, facilitate copy number study at a genome-wide scale with high resolution. However, due to normal tissue contamination, the observed intensity signals are actually the mixture of copy number signals contributed from both tumor and normal cells. This genetic confounding factor would significantly affect the subsequent copy number analyses. In order to accurately identify significant aberrations in contaminated cancer genome, we develop a Java AISAIC package (Accurate Identification of Significant Aberrations in Cancer) that incorporates recent novel algorithms in the literature, BACOM (Bayesian Analysis of Copy number Mixtures) and SAIC (Significant Aberrations in Cancer). Specifically, BACOM is used to estimate the normal tissue contamination fraction and recover the "true" copy number profiles. And SAIC is used to detect SCAs using large recovered tumor samples. Considering the popularity of modern multi-core computers and clusters, we adopt concurrent computing using Java Fork/Join API to speed up the analysis. We evaluate the performance of the AISAIC package in both empirical family-wise type I error rate and detection power on a large number of simulation data, and get promising results. Finally, we use AISAIC to analyze real cancer data from TCGA portal and detect many SCAs that not only cover majority of reported cancer-associated genes, but also some novel genome regions that may worth further study.
- Genome-wide identification of significant aberrations in cancer genomeYuan, Xiguo; Yu, Guoqiang; Hou, Xuchu; Shih, Ie-Ming; Clarke, Robert; Zhang, Junying; Hoffman, Eric P.; Wang, Roger R.; Zhang, Zhen; Wang, Yue (2012-07-27)Background Somatic Copy Number Alterations (CNAs) in human genomes are present in almost all human cancers. Systematic efforts to characterize such structural variants must effectively distinguish significant consensus events from random background aberrations. Here we introduce Significant Aberration in Cancer (SAIC), a new method for characterizing and assessing the statistical significance of recurrent CNA units. Three main features of SAIC include: (1) exploiting the intrinsic correlation among consecutive probes to assign a score to each CNA unit instead of single probes; (2) performing permutations on CNA units that preserve correlations inherent in the copy number data; and (3) iteratively detecting Significant Copy Number Aberrations (SCAs) and estimating an unbiased null distribution by applying an SCA-exclusive permutation scheme. Results We test and compare the performance of SAIC against four peer methods (GISTIC, STAC, KC-SMART, CMDS) on a large number of simulation datasets. Experimental results show that SAIC outperforms peer methods in terms of larger area under the Receiver Operating Characteristics curve and increased detection power. We then apply SAIC to analyze structural genomic aberrations acquired in four real cancer genome-wide copy number data sets (ovarian cancer, metastatic prostate cancer, lung adenocarcinoma, glioblastoma). When compared with previously reported results, SAIC successfully identifies most SCAs known to be of biological significance and associated with oncogenes (e.g., KRAS, CCNE1, and MYC) or tumor suppressor genes (e.g., CDKN2A/B). Furthermore, SAIC identifies a number of novel SCAs in these copy number data that encompass tumor related genes and may warrant further studies. Conclusions Supported by a well-grounded theoretical framework, SAIC has been developed and used to identify SCAs in various cancer copy number data sets, providing useful information to study the landscape of cancer genomes. Open-source and platform-independent SAIC software is implemented using C++, together with R scripts for data formatting and Perl scripts for user interfacing, and it is easy to install and efficient to use. The source code and documentation are freely available at http://www.cbil.ece.vt.edu/software.htm.