Browsing by Author "Hounshell, Alexandria G."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- Advancing lake and reservoir water quality management with near-term, iterative ecological forecastingCarey, Cayelan C.; Woelmer, Whitney M.; Lofton, Mary E.; Figueiredo, Renato J.; Bookout, Bethany J.; Corrigan, Rachel S.; Daneshmand, Vahid; Hounshell, Alexandria G.; Howard, Dexter W.; Lewis, Abigail S. L.; McClure, Ryan P.; Wander, Heather L.; Ward, Nicole K.; Thomas, R. Quinn (2021-01-18)Near-term, iterative ecological forecasts with quantified uncertainty have great potential for improving lake and reservoir management. For example, if managers received a forecast indicating a high likelihood of impending impairment, they could make decisions today to prevent or mitigate poor water quality in the future. Increasing the number of automated, real-time freshwater forecasts used for management requires integrating interdisciplinary expertise to develop a framework that seamlessly links data, models, and cyberinfrastructure, as well as collaborations with managers to ensure that forecasts are embedded into decision-making workflows. The goal of this study is to advance the implementation of near-term, iterative ecological forecasts for freshwater management. We first provide an overview of FLARE (Forecasting Lake And Reservoir Ecosystems), a forecasting framework we developed and applied to a drinking water reservoir to assist water quality management, as a potential open-source option for interested users. We used FLARE to develop scenario forecasts simulating different water quality interventions to inform manager decision-making. Second, we share lessons learned from our experience developing and running FLARE over 2 years to inform other forecasting projects. We specifically focus on how to develop, implement, and maintain a forecasting system used for active management. Our goal is to break down the barriers to forecasting for freshwater researchers, with the aim of improving lake and reservoir management globally.
- Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwatersCarey, Cayelan C.; Hanson, Paul C.; Thomas, R. Quinn; Gerling, Alexandra B.; Hounshell, Alexandria G.; Lewis, Abigail S.; Lofton, Mary E.; McClure, Ryan P.; Wander, Heather L.; Woelmer, Whitney M.; Niederlehner, B.R.; Schreiber, Madeline E. (Wiley, 2022-05-05)Oxygen availability is decreasing in many lakes and reservoirs worldwide, raising the urgency for understanding how anoxia (low oxygen) affects coupled biogeochemical cycling, which has major implications for water quality, food webs, and ecosystem functioning. Although the increasing magnitude and prevalence of anoxia has been documented in freshwaters globally, the challenges of disentangling oxygen and temperature responses have hindered assessment of the effects of anoxia on carbon, nitrogen, and phosphorus concentrations, stoichiometry (chemical ratios), and retention in freshwaters. The consequences of anoxia are likely severe and may be irreversible, necessitating ecosystem-scale experimental investigation of decreasing freshwater oxygen availability. To address this gap, we devised and conducted REDOX (the Reservoir Ecosystem Dynamic Oxygenation eXperiment), an unprecedented, 7-year experiment in which we manipulated and modeled bottom-water (hypolimnetic) oxygen availability at the whole-ecosystem scale in a eutrophic reservoir. Seven years of data reveal that anoxia significantly increased hypolimnetic carbon, nitrogen, and phosphorus concentrations and altered elemental stoichiometry by factors of 2–5× relative to oxic periods. Importantly, prolonged summer anoxia increased nitrogen export from the reservoir by six-fold and changed the reservoir from a net sink to a net source of phosphorus and organic carbon downstream. While low oxygen in freshwaters is thought of as a response to land use and climate change, results from REDOX demonstrate that low oxygen can also be a driver of major changes to freshwater biogeochemical cycling, which may serve as an intensifying feedback that increases anoxia in downstream waterbodies. Consequently, as climate and land use change continue to increase the prevalence of anoxia in lakes and reservoirs globally, it is likely that anoxia will have major effects on freshwater carbon, nitrogen, and phosphorus budgets as well as water quality and ecosystem functioning.
- Eddy Covariance Data Reveal That a Small Freshwater Reservoir Emits a Substantial Amount of Carbon Dioxide and MethaneHounshell, Alexandria G.; D'Acunha, Brenda M.; Breef-Pilz, Adrienne; Johnson, Mark S.; Thomas, R. Quinn; Carey, Cayelan C. (American Geophysical Union, 2023-03-14)Small freshwater reservoirs are ubiquitous and likely play an important role in global greenhouse gas (GHG) budgets relative to their limited water surface area. However, constraining annual GHG fluxes in small freshwater reservoirs is challenging given their footprint area and spatially and temporally variable emissions. To quantify the GHG budget of a small (0.1 km2) reservoir, we deployed an Eddy covariance (EC) system in a small reservoir located in southwestern Virginia, USA over 2 years to measure carbon dioxide (CO2) and methane (CH4) fluxes near-continuously. Fluxes were coupled with in situ sensors measuring multiple environmental parameters. Over both years, we found the reservoir to be a large source of CO2 (633–731 g CO2-C m−2 yr−1) and CH4 (1.02–1.29 g CH4-C m−2 yr−1) to the atmosphere, with substantial sub-daily, daily, weekly, and seasonal timescales of variability. For example, fluxes were substantially greater during the summer thermally stratified season as compared to the winter. In addition, we observed significantly greater GHG fluxes during winter intermittent ice-on conditions as compared to continuous ice-on conditions, suggesting GHG emissions from lakes and reservoirs may increase with predicted decreases in winter ice-cover. Finally, we identified several key environmental variables that may be driving reservoir GHG fluxes at multiple timescales, including, surface water temperature and thermocline depth followed by fluorescent dissolved organic matter. Overall, our novel year-round EC data from a small reservoir indicate that these freshwater ecosystems likely contribute a substantial amount of CO2 and CH4 to global GHG budgets, relative to their surface area.
- Experimental thermocline deepening alters vertical distribution and community structure of phytoplankton in a 4-year whole-reservoir manipulationLofton, Mary E.; Howard, Dexter W.; McClure, Ryan P.; Wander, Heather L.; Woelmer, Whitney M.; Hounshell, Alexandria G.; Lewis, Abigail S. L.; Carey, Cayelan C. (Wiley, 2022-11)Freshwater phytoplankton communities are currently experiencing multiple global change stressors, including increasing frequency and intensity of storms. An important mechanism by which storms affect lake and reservoir phytoplankton is by altering the water column's thermal structure (e.g., changes to thermocline depth). However, little is known about the effects of intermittent thermocline deepening on phytoplankton community vertical distribution and composition or the consistency of phytoplankton responses to varying frequency of these disturbances over multiple years. We conducted whole-ecosystem thermocline deepening manipulations in a small reservoir. We used an epilimnetic mixing system to experimentally deepen the thermocline via five short (24-72 hr) mixing events across two summers, inducing potential responses to storms. For comparison, we did not manipulate thermocline depth in two succeeding summers. We collected weekly depth profiles of water temperature, light, nutrients, and phytoplankton biomass as well as bottle samples to assess phytoplankton community composition. We then used time-series analysis and multivariate ordination to assess the effects of intermittent thermocline deepening due to both our experimental manipulations and naturally occurring storms on phytoplankton community structure. We observed inter-annual and intra-annual variability in phytoplankton community response to thermocline deepening. We found that peak phytoplankton biomass was significantly deeper in years with a higher frequency of thermocline deepening events (i.e., years with both manipulations and natural storms) due to altered thermal stratification and more variable depth distributions of soluble reactive phosphorus. Furthermore, we found that the depth of peak phytoplankton biomass was linked to phytoplankton community composition, with certain taxa being associated with deep or shallow biomass peaks, often according to functional traits such as optimal growth temperature, mixotrophy, and low-light tolerance. For example, Cryptomonas taxa, which are low-light tolerant and mixotrophic, were associated with deep peaks, while the cyanobacterial taxon Dolichospermum was associated with shallow peaks. Our results demonstrate that abrupt thermocline deepening due to water column mixing affects both phytoplankton depth distribution and community structure via alteration of physical and chemical gradients. In addition, our work supports previous research that phytoplankton depth distributions are related to phytoplankton community composition at inter-annual and intra-annual timescales. Variability in the inter-annual and intra-annual responses of phytoplankton to abrupt thermocline deepening indicates that antecedent conditions and the seasonal timing of surface water mixing may mediate these responses. Our findings emphasise that phytoplankton depth distributions are sensitive to global change stressors and effects on depth distributions should be taken into account when predicting phytoplankton responses to increased storms under global change.
- The importance of time and space in biogeochemical heterogeneity and processing along the reservoir ecosystem continuumWoelmer, Whitney M.; Hounshell, Alexandria G.; Lofton, Mary E.; Wander, Heather L.; Lewis, Abigail S. L.; Scott, Durelle T.; Carey, Cayelan C. (Springer, 2023-04)Globally significant quantities of carbon (C), nitrogen (N), and phosphorus (P) enter freshwater reservoirs each year. These inputs can be buried in sediments, respired, taken up by organisms, emitted to the atmosphere, or exported downstream. While much is known about reservoir-scale biogeochemical processing, less is known about spatial and temporal variability of biogeochemistry within a reservoir along the continuum from inflowing streams to the dam. To address this gap, we examined longitudinal variability in surface water biogeochemistry (C, N, and P) in two small reservoirs throughout a thermally stratified season. We sampled total and dissolved fractions of C, N, and P, as well as chlorophyll-a from each reservoir's major inflows to the dam. We found that heterogeneity in biogeochemical concentrations was greater over time than space. However, dissolved nutrient and organic carbon concentrations had high site-to-site variability within both reservoirs, potentially as a result of shifting biological activity or environmental conditions. When considering spatially explicit processing, we found that certain locations within the reservoir, most often the stream-reservoir interface, acted as "hotspots" of change in biogeochemical concentrations. Our study suggests that spatially explicit metrics of biogeochemical processing could help constrain the role of reservoirs in C, N, and P cycles in the landscape. Ultimately, our results highlight that biogeochemical heterogeneity in small reservoirs may be more variable over time than space, and that some sites within reservoirs play critically important roles in whole-ecosystem biogeochemical processing.
- Macrosystems EDDIE Teaching Modules Increase Students’ Ability to Define, Interpret, and Apply Concepts in Macrosystems EcologyHounshell, Alexandria G.; Farrell, Kaitlin J.; Carey, Cayelan C. (MDPI, 2021-07-26)Ecologists are increasingly using macrosystems approaches to understand population, community, and ecosystem dynamics across interconnected spatial and temporal scales. Consequently, integrating macrosystems skills, including simulation modeling and sensor data analysis, into undergraduate and graduate curricula is needed to train future environmental biologists. Through the Macrosystems EDDIE (Environmental Data-Driven Inquiry and Exploration) program, we developed four teaching modules to introduce macrosystems ecology to ecology and biology students. Modules combine high-frequency sensor data from GLEON (Global Lake Ecological Observatory Network) and NEON (National Ecological Observatory Network) sites with ecosystem simulation models. Pre- and post-module assessments of 319 students across 24 classrooms indicate that hands-on, inquiry-based modules increase students’ understanding of macrosystems ecology, including complex processes that occur across multiple spatial and temporal scales. Following module use, students were more likely to correctly define macrosystems concepts, interpret complex data visualizations and apply macrosystems approaches in new contexts. In addition, there was an increase in student’s self-perceived proficiency and confidence using both long-term and high-frequency data; key macrosystems ecology techniques. Our results suggest that integrating short (1–3 h) macrosystems activities into ecology courses can improve students’ ability to interpret complex and non-linear ecological processes. In addition, our study serves as one of the first documented instances for directly incorporating concepts in macrosystems ecology into undergraduate and graduate ecology and biology curricula.
- Macrosystems EDDIE teaching modules significantly increase ecology students' proficiency and confidence working with ecosystem models and use of systems thinkingCarey, Cayelan C.; Farrell, Kaitlin J.; Hounshell, Alexandria G.; O'Connell, Kristin (2020-11)Simulation models are increasingly used by ecologists to study complex, ecosystem-scale phenomena, but integrating ecosystem simulation modeling into ecology undergraduate and graduate curricula remains rare. Engaging ecology students with ecosystem simulation models may enable students to conduct hypothesis-driven scientific inquiry while also promoting their use of systems thinking, but it remains unknown how using hands-on modeling activities in the classroom affects student learning. Here, we developed short (3-hr) teaching modules as part of the Macrosystems EDDIE (Environmental Data-Driven Inquiry & Exploration) program that engage students with hands-on ecosystem modeling in the R statistical environment. We embedded the modules into in-person ecology courses at 17 colleges and universities and assessed student perceptions of their proficiency and confidence before and after working with models. Across all 277 undergraduate and graduate students who participated in our study, completing one Macrosystems EDDIE teaching module significantly increased students' self-reported proficiency, confidence, and likely future use of simulation models, as well as their perceived knowledge of ecosystem simulation models. Further, students were significantly more likely to describe that an important benefit of ecosystem models was their "ease of use" after completing a module. Interestingly, students were significantly more likely to provide evidence of systems thinking in their assessment responses about the benefits of ecosystem models after completing a module, suggesting that these hands-on ecosystem modeling activities may increase students' awareness of how individual components interact to affect system-level dynamics. Overall, Macrosystems EDDIE modules help students gain confidence in their ability to use ecosystem models and provide a useful method for ecology educators to introduce undergraduate and graduate students to ecosystem simulation modeling using in-person, hybrid, or virtual modes of instruction.
- Preparing Aquatic Research for an Extreme Future: Call for Improved Definitions and Responsive, Multidisciplinary ApproachesAoki, Lillian R.; Brisbin, Margaret Mars; Hounshell, Alexandria G.; Kincaid, Dustin W.; Larson, Erin, I; Sansom, Brandon J.; Shogren, Arial J.; Smith, Rachel S.; Sullivan-Stack, Jenna (Oxford University Press, 2022-06)Extreme events have increased in frequency globally, with a simultaneous surge in scientific interest about their ecological responses, particularly in sensitive freshwater, coastal, and marine ecosystems. We synthesized observational studies of extreme events in these aquatic ecosystems, finding that many studies do not use consistent definitions of extreme events. Furthermore, many studies do not capture ecological responses across the full spatial scale of the events. In contrast, sampling often extends across longer temporal scales than the event itself, highlighting the usefulness of long-term monitoring. Many ecological studies of extreme events measure biological responses but exclude chemical and physical responses, underscoring the need for integrative and multidisciplinary approaches. To advance extreme event research, we suggest prioritizing pre- and postevent data collection, including leveraging long-term monitoring; making intersite and cross-scale comparisons; adopting novel empirical and statistical approaches; and developing funding streams to support flexible and responsive data collection.
- Use of Geospatial, Hydrologic, and Geochemical Modeling to Determine the Influence of Wetland-Derived Organic Matter in Coastal Waters in Response to Extreme Weather EventsRudolph, Jacob C.; Arendt, Carli A.; Hounshell, Alexandria G.; Paerl, Hans W.; Osburn, Christopher L. (2020-02-07)Flooding from extreme weather events (EWE), such as hurricanes, exports large amounts of dissolved organic matter (DOM) to both estuaries and coastal waters globally. Hydrologic connectivity of wetlands to adjacent river channels during flood events can potentially have a major control on the DOM exported to coastal waters after EWEs. In this study, a geographic information system based flood model was used to: (1) determine the volume of flooded wetlands in a river corridor following Hurricane Matthew in 2016; (2) compute the resulting volume fluxes of DOM to the Neuse River Estuary-Pamlico Sound (NRE-PS), in eastern North Carolina and (3) use the flood model to quantify the wetland contribution to DOM export. The flood model-derived contributions were validated with a Bayesian Monte Carlo mixing model combining measurements of DOM quality: specific UV Absorbance at 254 nm (SUVA(254)), spectral slope ratio (SR), and stable isotope ratios of dissolved organic carbon (delta C-13-DOC). Results indicated that (1) hydrologic connectivity of the freshwater riparian wetlands caused the wetlands to become the primary source of organic matter (OM) that was exported into the NRE-PS after Matthew and (2) this source lingered in these coastal waters in the months after the storm. Thus, in consideration of the pulse-shunt concept, EWE such as Hurricane Matthew cause pulses of DOM from wetlands, which were the primary source of the OM shunted from the terrestrial environment to the estuary and sound. Wetlands constituted ca. 48% of the annual loading of DOC into the NRE and 16% of DOC loading into the PS over a period of 30 days after Hurricane Matthew. Results were consistent with prior studies in this system, and other coastal ecosystems, that attributed a high reactivity of DOM as the underlying reason for large CO2 releases following EWE. Adapting the pulse-shunt concept to estuaries requires the addition of a "processing" step to account for the DOM to CO2 dynamics, thus a new pulse-shunt process is proposed to incorporate coastal waters. Our results suggest that with increasing frequency and intensity of EWE, strengthening of the lateral transfer of DOM from land to ocean will occur and has the potential to greatly impact coastal carbon cycling.
- Whole-ecosystem oxygenation experiments reveal substantially greater hypolimnetic methane concentrations in reservoirs during anoxiaHounshell, Alexandria G.; McClure, Ryan P.; Lofton, Mary E.; Carey, Cayelan C. (Wiley, 2020)Lakes and reservoirs globally produce large quantities of methane and carbon dioxide in their sediments, which accumulate in the hypolimnia (bottom waters) during thermally stratified conditions. A key parameter controlling hypolimnetic greenhouse gas concentrations is dissolved oxygen. Land use and climate change have increased hypolimnetic anoxia worldwide in lakes and reservoirs, which is expected to affect their methane and carbon dioxide concentrations. We conducted whole-ecosystem oxygenation experiments to assess the effects of oxygen concentrations on dissolved hypolimnetic greenhouse gas concentrations in comparison to a reference reservoir and calculated the maximum hypolimnetic global warming potential in both reservoirs over three summers. We observed significantly greater hypolimnetic methane under anoxic conditions but similar carbon dioxide concentrations, leading to greater hypolimnetic global warming potential of anoxic hypolimnia. Our study indicates that the global warming potential of hypolimnetic greenhouse gas concentrations may increase as the prevalence of hypolimnetic anoxia increases due to global change.