Browsing by Author "Hsieh, Yi-Hsun"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Accurate Small-Signal Modeling for Resonant ConvertersHsieh, Yi-Hsun (Virginia Tech, 2020-11-24)In comparison with PWM converters, resonant converters are gaining increasing popularity for cases in which efficiency and power density are at a premium. However, the lack of an accurate small-signal model has become an impediment to performance optimization. Many modeling attempts have been made to date. Besides the discrete time-domain modeling, most continuous-time modeling approaches are based on fundamental approximation, and are thus unable to provide sufficient accuracy for practical use. An equivalent circuit model was proposed by Yang, which works well for series resonant converters (SRCs) with high Q (quality factor), but which is inadequate for LLC resonant converters. Furthermore, the model is rather complicated, with system orders that are as high as five and seven for the SRC and LLC converter, respectively. The crux of the modeling difficulty is due to the underlying assumption based on the use of a band-pass filter for the resonant tank in conjunction with a low-pass output filter, which is not the case for most practical applications. The matter is further complicated by the presence of a rectifier, which is a nonlinearity that mixes and matches the original modulation frequency. Thus, the modulation signal becomes intractable when using a frequency-domain modeling approach. This dissertation proposes an extended describing function modeling that is based on a Fourier analysis on the continuous-time-domain waveforms. Therefore, all important contributions from harmonics are taken into account. This modeling approach is demonstrated on the frequency-controlled SRC and LLC converters. The modeling is further extended to, with great accuracy, a charge-controlled LLC converter. In the case of frequency control, a simple third-order equivalent circuit model is provided with high accuracy up to half of the switching frequency. The simplified low-frequency model consists of a double pole and a pair of right-half-plane (RHP) zeros. The double pole, when operated at a high switching frequency, manifests the property of a well-known beat frequency between the switching frequency and the resonant frequency. As the switching frequency approaches the resonant frequency of the tank, a new pair of poles is formed, representing the interaction of the resonant tank and the output filter. The pair of RHP zeros, which contributes to additional phase delay, was not recognized in earlier modeling attempts. In the case of charge control, a simple second-order equivalent circuit model is provided. With capacitor voltage feedback, the order of the system is reduced. Consequently, the resonant tank behaves as an equivalent current source and the tank property is characterized by a single pole. The other low-frequency pole represents the output capacitor and the load. However, the capacitor voltage feedback cannot eliminate the high-frequency poles and the RHP zeros. These RHP zeros may be an impediment for high-bandwidth design if not properly treated. Based on the proposed model, these unwanted RHP zeros can be mitigated by either changing the resonant tank design or by proper feedback compensation. The accurate model is essential for a high-performance high-bandwidth LLC converter.
- Modeling and Control of Modular Multilevel ConverterGupta, Yugal (Virginia Tech, 2022-07-20)Due to modularity and easy scalability, modular multilevel converters (MMCs) are deemed the most suitable for high-voltage and medium-voltage power conversion applications. However, large module capacitors are usually required in MMCs to store large circulating power of line-frequency and its harmonics that flow through the capacitors. Even though several methods for minimizing the circulating power have been proposed in the literature, there is still the need for a systematic and simplified approach of addressing these control strategies and evaluating their efficacy. Moreover, the generally accepted feedback control architecture for the MMC is complicated, derived through a rigorous mathematical analysis, and therefore, not easy to intuitively comprehend. Recently, a method of modeling of the MMC based on state-plane analysis and coordinate transformation, is proposed in the literature. Based on the state-plane analysis, two kinds of circulating power in the MMC are identified that are orthogonal to each other. This means these two circulating power can be controlled individually without affecting each other. To control these circulating power, in the literature, a decoupled equivalent circuit model is developed through the coordinate transformation which clearly suggests a means for minimizing these circulating power. Further extending this work, in this thesis, the existing control concepts for reducing the circulating power are unveiled in a systematic and simplified manner utilizing the decoupled equivalent circuit model. A graphical visualization of circulating power using the state-planes is provided for each control strategy to readily compare its efficacy. Moreover, the generally accepted control architecture of the MMC is presented in an intuitive and simplified way using the decoupled circuit model. The important physics related to control implementation, originally hidden behind the complicated mathematics, is explained in detail.
- Modular multilevel converter capacitor voltage ripple reduction(United States Patent and Trademark Office, 2019-09-03)Aspects of capacitor voltage ripple reduction in modular multilevel converters are described herein. In one embodiment, a power converter system includes a modular multilevel converter (MMC) electrically coupled and configured to convert power between two different power systems. The MMC includes one or more phase legs having a cascade arrangement of switching submodules, where the switching submodules include an arrangement of switching power transistors and capacitors. The MMC further includes a control loop including a differential mode control loop and a common mode control loop. The differential control loop is configured to generate a differential control signal based on a target modulation index to reduce fundamental components of voltage ripple on the capacitors, and the common mode control loop is configured to inject 2nd order harmonic current into a common mode control signal to reduce 2nd order harmonic components of the voltage ripple on the capacitors.