Browsing by Author "Hu, Mo"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Cognitive differences among first-year and senior engineering students when generating design solutions with and without additional dimensions of sustainabilityHu, Mo; Shealy, Tripp; Milovanovic, Julie (2021-02-08)The research presented in this paper explores how engineering students cognitively manage concept generation and measures the effects of additional dimensions of sustainability on design cognition. Twelve first-year and eight senior engineering students generated solutions to 10 design problems. Half of the problems included additional dimensions of sustainability. The number of unique design solutions students developed and their neurocognitive activation were measured. Without additional requirements for sustainability, first-year students generated significantly more solutions than senior engineering students. First-year students recruited higher cortical activation in the brain region generally associated with cognitive flexibility, and divergent and convergent thinking. Senior engineering students recruited higher activation in the brain region generally associated with uncertainty processing and self-reflection. When additional dimensions of sustainability were present, first-year students produced fewer solutions. Senior engineering students generated a similar number of solutions. Senior engineering students required less cortical activation to generate a similar number of solutions. The varying patterns of cortical activation and different number of solutions between first-year and senior engineering students begin to highlight cognitive differences in how students manage and retrieve information in their brain during design. Students' ability to manage complex requirements like sustainability may improve with education.
- Neuroscience for Engineering Sustainability: Measuring Cognition During Design Ideation and Systems Thinking Among Students in EngineeringHu, Mo (Virginia Tech, 2018-01-16)Sustainability is inherently a complex problem that requires new ways of thinking. To solve grand challenges such as climate change, environmental degradation, and poverty, engineers cannot rely on the same models of thinking that were used to create these problems. Engineering education is therefore critical to advance sustainable engineering solutions. Improving education relies on understanding of cognition of thinking and designing for sustainability. In this thesis, a nascent neuroimaging technology called functional near-infrared spectroscopy (fNIRS) was used to measure cognition among engineering students thinking about sustainability. fNIRS provides an opportunity to investigate how sustainability in design influences cognition, and how different concept generation techniques help students consider many aspects related to sustainability. The first manuscript provides evidence that engineering students perceive sustainability in design as a constraint, limiting the number of solutions for design and decreasing the cognitive efficiency to generate solutions. Senior engineering students generated fewer solutions than freshmen, however, seniors were better able to cognitively manage the sustainability parameter with higher cognitive efficiency. The second manuscript investigates the cognitive difference when generating concepts using concept listing or concept mapping. The results indicate that concept mapping (i.e. intentionally drawing relationships between concepts) leads to more concepts generated. An increase in concepts during concept mapping was also observed to shift cognitive load in the brain from regions associated with process sequencing to regions associated with cognitive flexibility. This research demonstrates the feasibility of fNIRS applied in engineering research and provides more understanding of the cognitive requirements for sustainability thinking.
- Preference Construction and Decision-Making for Green Infrastructure: How Do Behavioral Interventions Influence Choice and Neurocognition?Hu, Mo (Virginia Tech, 2021-11-30)"Nature-based solutions", such as green stormwater infrastructure, take advantage of natural systems to tackle the increasing challenges facing the built environment. Green infrastructure is effective in reducing stormwater runoff for urban stormwater management using connected green space. Green infrastructure also delivers multiple benefits to the community (e.g., increased quality of life and public health) and environment (e.g., enhanced biodiversity, less energy use, and reduced urban heat island effect), which is adaptive to the changing climate. However, the pace and the scale of green infrastructure implementation are still not on track with the much-needed change in the urban built environment. Policy barriers, resources barriers, governance barriers, and cognitive barriers are limiting the practice. Cognitive barriers are cited as the most critical barrier because most of the barriers limiting green infrastructure stem from and are intensified by human cognition during the design and decision-making process for infrastructure. Stakeholders involved in the decision-making process for green infrastructure must weigh the perceived risks and benefits that green infrastructure provides. This dissertation aims to better understand how stakeholders perceive green infrastructure, how much they weigh risks and benefits, and test interventions to aid the decision-making process to promote more green infrastructure design. Both a stated preference survey with discrete choice modeling and two sets of experiments using neuroimaging to measure the change in neurocognition were used to explore preference construction and decision-making about green infrastructure. A sample of the public (N=946) across the U.S. participated in the survey and reported their perceptions of risk and benefit about green infrastructure. The result highlights that perceived higher risk of green infrastructure reduced people's preference for green infrastructure. In contrast, perceived higher benefit, age, education, and the use of a rating system to measure sustainability outcomes firstly contribute to people's preference construction for green infrastructure. Engineering students who were trained in stormwater infrastructure design (N=60) participated in a stormwater infrastructure design scenario. Change in students' neurocognition was measured when students made judgments and decisions between a green infrastructure design option and a conventional stormwater infrastructure design option. Two interventions, (1) telling students about a municipal resolution in support of green infrastructure and (2) priming students to think about sustainable design before evaluating design options, were tested to change perceptions about risk and benefit of stormwater design options. The results found that telling decision-makers about a green infrastructure resolution changed their neurocognition when processing perceived risk and reduced the perceived risk they associated with green infrastructure. The results also found that priming decision-makers to think about sustainable design with a rating system for sustainability significantly decreased their cognitive load when evaluating the benefits of green infrastructure and increased their stated benefits associated with green infrastructure. These findings demonstrate the effects of relatively simple choice modifications to promote more green infrastructure. The results provide insights for policy-makers, engineers, and other stakeholders involved in the early-phase decisions on effective practice to modify human choice when facing challenges with sustainable and resilient design.