Browsing by Author "Huang, Jian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing predictive performance and transferability of species distribution models for freshwater fish in the United StatesHuang, Jian (Virginia Tech, 2015-05-27)Rigorous modeling of the spatial species distributions is critical in biogeography, conservation, resource management, and assessment of climate change. The goal of chapter 2 of this dissertation was to evaluate the potential of using historical samples to develop high-resolution species distribution models (SDMs) of stream fishes of the United States. I explored the spatial transferability and temporal transferability of stream–fish distribution models in chapter 3 and chapter 4 respectively. Chapter 2 showed that the discrimination power of SDMs for 76 non-game fish species depended on data quality, species' rarity, statistical modeling technique, and incorporation of spatial autocorrelation. The area under the Receiver-Operating-Characteristic curve (AUC) in the cross validation tended to be higher in the logistic regression and boosted regression trees (BRT) than the presence-only MaxEnt models. AUC in the cross validation was also higher for species with large geographic ranges and small local populations. Species prevalence affected discrimination power in the model training but not in the validation. In chapter 3, spatial transferability of SDMs was low for over 70% of the 21 species examined. Only 24% of logistic regression, 12% of BRT, and 16% of MaxEnt had AUC > 0.6 in the spatial transfers. Friedman's rank sum test showed that there was no significant difference in the performance of the three modeling techniques. Spatial transferability could be improved by using spatial logistic regression under Lasso regularization in the training of SDMs and by matching the range and location of predictor variables between training and transfer regions. In chapter 4, testing of temporal SDM transfer on independent samples resulted in discrimination power of the moderate to good range, with AUC > 0.6 for 80% of species in all three types of models. Most cool water species had good temporal transferability. However, biases and misspecified spread occurred frequently in the temporal model transfers. To reduce under- or over-estimation bias, I suggest rescaling the predicted probability of species presence to ordinal ranks. To mitigate inappropriate spread of predictions in the climate change scenarios, I recommended to use large training datasets with good coverage of environmental gradients, and fine-tune predictor variables with regularization and cross validation.
- Using Historical Atlas Data to Develop High-Resolution Distribution Models of Freshwater FishesHuang, Jian; Frimpong, Emmanuel A. (Public Library of Science, 2015-06-15)Understanding the spatial pattern of species distributions is fundamental in biogeography, and conservation and resource management applications. Most species distribution models (SDMs) require or prefer species presence and absence data for adequate estimation of model parameters. However, observations with unreliable or unreported species absences dominate and limit the implementation of SDMs. Presence-only models generally yield less accurate predictions of species distribution, and make it difficult to incorporate spatial autocorrelation. The availability of large amounts of historical presence records for freshwater fishes of the United States provides an opportunity for deriving reliable absences from data reported as presence-only, when sampling was predominantly community-based. In this study, we used boosted regression trees (BRT), logistic regression, and MaxEnt models to assess the performance of a historical metacommunity database with inferred absences, for modeling fish distributions, investigating the effect of model choice and data properties thereby. With models of the distribution of 76 native, non-game fish species of varied traits and rarity attributes in four river basins across the United States, we show that model accuracy depends on data quality (e.g., sample size, location precision), species' rarity, statistical modeling technique, and consideration of spatial autocorrelation. The cross-validation area under the receiver-operating-characteristic curve (AUC) tended to be high in the spatial presence-absence models at the highest level of resolution for species with large geographic ranges and small local populations. Prevalence affected training but not validation AUC. The key habitat predictors identified and the fish-habitat relationships evaluated through partial dependence plots corroborated most previous studies. The community-based SDM framework broadens our capability to model species distributions by innovatively removing the constraint of lack of species absence data, thus providing a robust prediction of distribution for stream fishes in other regions where historical data exist, and for other taxa (e.g., benthic macroinvertebrates, birds) usually observed by community-based sampling designs.