Browsing by Author "Huemmrich, Karl F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessment of the diurnal relationship of photochemical reflectance index to forest light use efficiency by accounting for sunlit and shaded foliageWilliams, Paige Tatum; Harding, David J.; Thomas, Valerie A.; Wynne, Randolph H.; Ranson, Kenneth J.; Huemmrich, Karl F.; Middleton, Elizabeth; Campbell, Petya K. (Virginia Tech, 2021-04-30)Gross Primary Productivity (GPP) is the amount of carbon fixed during photosynthesis by all producers in the ecosystem. GPP is dependent on light use efficiency (LUE), photosynthetically active radiation (PAR), and fraction of absorbed PAR (fPAR). To estimate light use efficiency (LUE), which is dependent on the exposure of leaves to photosynthetically active radiation (PAR), the photochemical reflectance index (PRI) is calculated using 531 nm and 570 nm wavelengths. Our team has examined the sensitivity of forest canopy PRI to canopy shadows using airborne hyperspectral data acquired in eastern North Carolina. A bounding box for this study was placed adjacent to a flux tower in a loblolly pine stand to evaluate the variability of LUE derived from the reflectance data acquired in the morning, midday and afternoon, and compare LUE estimates to the flux tower observations. We compute PRI values for the sunlit and shadowed parts of the canopy determined by thresholding a 2 m panchromatic image produced by averaging wavelength bands from 525 nm to 600 nm. We show that PRI for the sunlit canopy is substantially lower than for the shadowed components at all times of day, leading to an overestimate of LUE when using whole-canopy reflectance. Implications for estimating GPP using PRI reflectance as a surrogate for LUE is examined by comparing to the flux tower derivation of GPP. This work is being done to refine measurement requirements for a diurnal constellation concept, the Structure and Function of Ecosystems (SAFE).
- The discrete wavelet transform as a precursor to leaf area index estimation and species classification using airborne hyperspectral dataBanskota, Asim (Virginia Tech, 2011-08-08)The need for an efficient dimensionality reduction technique has remained a critical challenge for effective analysis of hyperspectral data for vegetation applications. Discrete wavelet transform (DWT), through multiresolution analysis, offers oppurtunities both to reduce dimension and convey information at multiple spectral scales. In this study, we investigated the utility of the Haar DWT for AVIRIS hyperspectral data analysis in three different applications (1) classification of three pine species (Pinus spp.), (2) estimation of leaf area index (LAI) using an empirically-based model, and (3) estimation of LAI using a physically-based model. For pine species classification, different sets of Haar wavelet features were compared to each other and to calibrated radiance. The Haar coefficients selected by stepwise discriminant analysis provided better classification accuracy (74.2%) than the original radiance (66.7%). For empirically-based LAI estimation, the models using the Haar coefficients explained the most variance in observed LAI for both deciduous plots (cross validation R² (CV-R²) = 0.79 for wavelet features vs. CV-R² = 0.69 for spectral bands) and all plots combined (CV R² = 0.71 for wavelet features vs. CV-R² = 0.50 for spectral bands). For physically-based LAI estimation, a look-up-table (LUT) was constructed by a radiative transfer model, DART, using a three-stage approach developed in this study. The approach involved comparison between preliminary LUT reflectances and image spectra to find the optimal set of parameter combinations and input increments. The LUT-based inversion was performed with three different datasets, the original reflectance bands, the full set of the wavelet extracted features, and the two wavelet subsets containing 99.99% and 99.0% of the cumulative energy of the original signal. The energy subset containing 99.99% of the cumulative signal energy provided better estimates of LAI (RMSE = 0.46, R² = 0.77) than the original spectral bands (RMSE = 0.69, R² = 0.42). This study has demonstrated that the application of the discrete wavelet transform can provide more accurate species discrimination within the same genus than the original hyperspectral bands and can improve the accuracy of LAI estimates from both empirically- and physically-based models.