Browsing by Author "Hull, Matthew S."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Building a safety program to protect the nanotechnology workforce: a guide for small to medium-sized enterprisesHull, Matthew S. (National Institute For Occupational Safety And Health, Dhhs (NIOSH), 2016-03-31)This guide provides entrepreneurs and business owners with the tools necessary to develop and implement a written health and safety program to protect employees and colleagues. The guide helps readers recognize and control potential hazards and risks from nanomaterial processes that may adversely impact the health, safety, and well-being of employees and the productivity of business.
- Continuous synthesis of Zn2Al-CO3 layered double hydroxides: a comparison of bench, pilot and industrial scale synthesesClark, Ian; Gomes, Rachel Louise; Crawshaw, C.; Neve, L.; Lodge, Rhys; Fay, Michael; Winkler, C.; Hull, Matthew S.; Lester, Ed (2019-04-01)Zn2Al-CO3 was produced continuously at bench (g h(-1)), pilot (100s g h -1) and industrial scale (10s kg h(-1)). Crystal domain length and BET surface area were similar at all three scales although there was a small increase at pilot scale. Platelet size increased from 120 nm at bench to 177 nm and 165 nm at pilot scale and industrial scale, respectively. Overall this paper shows that the increase in scale by almost 2000x does not impact on the overall product quality which is an excellent indicator that continuous hydrothermal synthesis is a route for nanomaterials synthesis.
- An Ecotoxicological Recovery Assessment of the Clinch River Following Coal Industry-related Disturbances in Carbo, Virginia (USA): 1967-2002Hull, Matthew S. (Virginia Tech, 1998-08-04)American Electric Power's (AEP) coal-fired Clinch River Plant, a power-generating facility in Carbo, Russell County, Virginia (USA), has impaired Clinch River biota through toxic spills in 1967 and 1970, and effluent copper (Cu) concentrations that were reported to have exceeded water quality criteria from 1985-1989. These impacts have provided impetus for many research projects addressing the absence of bivalves, including federally protected species of native mussels (Unionoidea), from sites influenced by CRP effluent. Modifications in CRP effluent during 1987 and 1993 drastically reduced Cu levels and warranted the present study, which assessed long-term biological recovery in Clinch River biota near the CRP. In 2000-2001, surveys of benthic macroinvertebrate communities and instantaneous measures of effluent toxicity did not foretell significant reductions in survivorship and growth of field-caged Asian clams (Corbicula fluminea) at sites downstream of the CRP. More importantly, these results indicated renewed toxicity in CRP effluent. Additional transplant studies using two enclosure types were conducted to isolate effects attributable to CRP effluent from the potentially confounding effects of substrate variability among study sites. While it was found that mean growth of clams was greatest in the enclosure that minimized substrate variability (p=0.0157), both enclosure types clearly distinguished significant impairment of survivorship and growth at sites downstream of the CRP discharge, and strengthened the association between impairment and CRP effluent. An intensive field investigation was undertaken to determine whether impairment observed in transplant studies extended to resident bivalves. During 2001-2002, densities and age structures of C. fluminea and distributions of mussels suggested that impairment indeed extended to resident bivalves for a distance of 0.5 to 0.6 km downstream of the CRP discharge. Impairment of bivalves was less evident below (1) a fly ash landfill and (2) coal mining activities and low-volume leachate from a bottom ash settling pond. With respect to long-term recovery, modifications in CRP effluent treatment have reduced Cu concentrations from an average of 436 mg/L in 1985-1989 to 13 mg/L in 1991-2002. Subsequently, Cu body burdens of Asian clams (Corbicula fluminea) transplanted within CRP influence have decreased from 442% of levels accumulated at reference sites in 1986, to 163% of these levels in 2002. The reduction in effluent Cu largely explains recovery of most benthic macroinvertebrate community parameters (e.g., richness, diversity) at influenced sites from levels that were typically less than 70% of reference levels, to levels that frequently range from 80 to greater than 100% of reference levels. Nevertheless, bivalves remain impaired downstream of the CRP; survivorship and growth of C. fluminea transplanted to CRP-influenced sites have typically been less than 40 and 20% of reference values, respectively. Furthermore, C. fluminea has seldom been encountered within CRP influence for nearly two decades. Likewise, native mussels remain absent within CRP influence, but recent surveys suggest their downstream distributions are more proximate to the CRP discharge than has been reported previously. A preliminary assessment of factors potentially contributing to toxicity revealed that (1) water reclaimed from settling basins for discharge with CRP effluent significantly impaired fecundity of ceriodaphnids at concentrations of 50%, (2) LC50 values for industrial treatment chemicals were misrepresented on Material Safety Data Sheets and consequently, were subject to misapplication by operators, (3) Cu concentrations of 96 mg/L significantly impaired growth of Asian clams in artificial stream testing, and (4) effluent Al exceeded acute and chronic water quality criteria, suggesting this ion should receive further consideration in future studies.
- Effect of Silver Nanoparticles and Antibiotics on Antibiotic Resistance Genes in Anaerobic DigestionMiller, Jennifer H.; Novak, John T.; Knocke, William R.; Young, Katherine; Pruden, Amy; Hong, Yanjuan; Vikesland, Peter J.; Hull, Matthew S.; Pruden, Amy (Water Environment Federation, 2013-05)Water resource recovery facilities have been described as creating breeding ground conditions for the selection, transfer, and dissemination of antibiotic resistance genes (ARGs) among various bacteria. The objective of this study was to determine the effect of direct addition of antibiotic and silver nanoparticles (Ag NPs, or nanosilver) on the occurrence of ARGs in thermophilic anaerobic digesters. Test thermophilic digesters were amended with environmentally-relevant concentrations of Ag NP (0.01, 0.1, and 1.0 mg-Ag/L; corresponding to ≈ 0.7, 7.0, and 70 mg-Ag/kg total solids) and sulfamethoxazole (SMX) that span susceptible to resistant classifications (1, 5, and 50 mg/L) as potential selection pressures for ARGs. Tetracycline (tet(O), tet(W)) and sulfonamide (sulI, sulII) ARGs and the integrase enzyme gene (intI1) associated with Class 1 integrons were measured in raw sludge, test thermophilic digesters, a control thermophilic digester, and a control mesophilic digester. There was no apparent effect of Ag NPs on thermophilic anaerobic digester performance. The maximum SMX addition (50 mg/L) resulted in accumulation of volatile fatty acids and low pH, alkalinity, and volatile solids reduction. There was no significant difference between ARG gene copy numbers (absolute or normalized to 16S rRNA genes) in amended thermophilic digesters and the control thermophilic digester. Antibiotic resistance gene copy numbers in digested sludge ranged from 10³ to 10⁶ copies per µL (≈ 8 × 10¹ to 8 × 10⁴ copies per lg) of sludge as result of a 1-log reduction of ARGs (2- log reduction for intI1). Quantities of the five ARGs in raw sludge ranged from 10⁴ to 10⁸ copies per lL (≈ 4 × 10² to 4 × 10⁶ per lg) of sludge. Test and control thermophilic digesters (53 °C, 12-day solids retention time [SRT]) consistently reduced but did not eliminate levels of all analyzed genes. The mesophilic digester (37 °C, 20-day SRT) also reduced levels of sulI, sulII, and intI1 genes, but levels of tet(O) and tet(W) were the same or higher than in raw sludge. Antibiotic resistance gene reductions remained constant despite the application of selection pressures, which suggests that digester operating conditions are a strong governing factor of the bacterial community composition and thus the prevalence of ARGs.
- An Emergency Powered Air-Purifying Respirator From Local Materials and its Efficacy Against Aerosolized NanoparticlesKessel, Jeff; Saevig, Christopher S.; Hill, W. Cary; Kessel, Benjamin; Hull, Matthew S. (Sage Publications Inc, 2022-03)We describe an approach used by a rural healthcare provider to convert surgical helmets into emergency powered air-purifying respirators (PAPRs) at the onset of the COVID-19 pandemic. The approach uses common materials and efficacy was demonstrated against aerosols measuring 7 nm to 25 mu m in diameter.
- Factors influencing the uptake and fate of metallic nanoparticles in filter-feeding bivalvesHull, Matthew S. (Virginia Tech, 2011-08-11)Metallic nanoparticles (MetNPs) with unique nanoscale properties, including novel optical behavior and superparamagnetism, are continually being developed for biomedical and industrial applications. In certain biomedical applications where extended blood half-lives are required, MetNPs are surface-functionalized using polymers, proteins, and other stabilizing agents to facilitate their resistance to salt-induced aggregation. Given their colloidal stability in high ionic-strength matrices, functionalized MetNPs are anticipated to be persistent aquatic contaminants. Despite their potential environmental significance, the persistence of surface- functionalized MetNPs as individually-stabilized nanoparticles in aquatic environments is largely unknown. Further, few studies have investigated the fundamental factors that influence MetNP uptake and fate/transport processes in ecologically susceptible aquatic biota, such as filter- feeding bivalves, which ingest and accumulate a broad range of dissolved- and particulate-phase contaminants. The present study describes a comprehensive approach to prepare and rigorously characterize MetNP test suspensions to facilitate fundamental examinations of nanoparticle uptake and fate/transport processes in freshwater and marine bivalves. We demonstrate the importance of accurately characterizing test suspensions in order to better understand MetNP persistence as individually-stabilized nanoparticles within aquatic test media, and define an optical-activity metric suitable for quantifying and comparing the persistence of variable MetNP formulations as National Nanotechnology Initiative (NNI) definable nanoscale materials. We also show that individually-stabilized MetNPs of variable elemental composition, particle diameter, and surface coating are accessible to bivalves in both freshwater and marine environments. Clearance rates for MetNPs are positively related to the diameter and initial concentration of MetNP suspensions. The observed size-dependence of particle filtration rates facilitates ‘size-selective biopurification' of particle suspensions with nanoscale resolution, and may have applicability in future sustainable nanomanufacturing processes. Filtered MetNPs are retained for extended periods post-exposure primarily within the bivalve digestive tract and digestive gland, but migration to other organ systems was not observed. Clusters of MetNPs were recovered in concentrated form from excreted feces, suggesting that biotransformation and biodeposition processes will play an important role in transferring MetNPs from the water column to benthic environments.
- Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventoryVance, Marina; Kuiken, Todd; Vejerano, Eric P.; McGinnis, Sean; Hochella, Michael F. Jr.; Rejeski, David; Hull, Matthew S. (Beilstein-Institut, 2015)To document the marketing and distribution of nano-enabled products into the commercial marketplace, the Woodrow Wilson International Center for Scholars and the Project on Emerging Nanotechnologies created the Nanotechnology Consumer Products Inventory (CPI) in 2005. The objective of this present work is to redevelop the CPI by leading a research effort to increase the usefulness and reliability of this inventory. We created eight new descriptors for consumer products, including information pertaining to the nanomaterials contained in each product. The project was motivated by the recognition that a diverse group of stakeholders from academia, industry, and state/federal government had become highly dependent on the inventory as an important resource and bellweather of the pervasiveness of nanotechnology in society. We interviewed 68 nanotechnology experts to assess key information needs. Their answers guided inventory modifications by providing a clear conceptual framework best suited for user expectations. The revised inventory was released in October 2013. It currently lists 1814 consumer products from 622 companies in 32 countries. The Health and Fitness category contains the most products (762, or 42% of the total). Silver is the most frequently used nanomaterial (435 products, or 24%); however, 49% of the products (889) included in the CPI do not provide the composition of the nanomaterial used in them. About 29% of the CPI (528 products) contain nanomaterials suspended in a variety of liquid media and dermal contact is the most likely exposure scenario from their use. The majority (1288 products, or 71%) of the products do not present enough supporting information to corroborate the claim that nanomaterials are used. The modified CPI has enabled crowdsourcing capabilities, which allow users to suggest edits to any entry and permits researchers to upload new findings ranging from human and environmental exposure data to complete life cycle assessments. There are inherent limitations to this type of database, but these modifications to the inventory addressed the majority of criticisms raised in published literature and in surveys of nanotechnology stakeholders and experts. The development of standardized methods and metrics for nanomaterial characterization and labelling in consumer products can lead to greater understanding between the key stakeholders in nanotechnology, especially consumers, researchers, regulators, and industry.